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PREFACE

This book presents a simple, concise, and reasonably comprehensive
introduction to the principles and theory of structural stability that are
the basis for structural steel design and shows how they may be used in
the solution of practical building frame design problems. It provides the
necessary background for the transition for students of structural
engineering from fundamental theories of structural stability of members
and frames to practical design rules in AISC Specifications. [t was written
for upper level undergraduate or beginning graduate students in colleges
and universities on the one hand, and those in engineering practice on
the other.

The scope of the book is indicated by its contents. The concepts and
principles of structural stabiiity presented in Chapter 1 form the basis for
the elastic and plastic theories of stability of members and frames which
are discussed separately in Chapter 2 {Columns), Chapter 3 (Beam-
Columns), Chapter 4 (Rigid Frames), and Chapter 5 {Beams). The
energy and numerical methods of analyzing a structure for its stability
limit load are described in Chapter 6.

Each of these later chapters sets out initially to state the basic
principles of structural stability, followed by the derivation of the
necessary basic governing differential equations based on idealized
conditions. These classical solutions and their physical significance are
then examined. The chapter gees on to show how these solutions are
affected by the inelasticity of the material and imperfection of the
structural member and system associated with a real structure, using both
hand techniques and modern computer capabilities. It finally outlines
some of the popularly used technigues by which this voluminous
information may be utilized to provide design rules and calculation

ix




X Preface

techniques suitable for design office use. In this way, the reader not only
will obtain an understanding of the fundamental principles and theory of
structural stability from an idealized elastic, perfect system, but also to an
inelastic imperfect system that leads to the necessary links between the
code rules, design office practice, and the actual structural system in the
real world.

The continued rapid development in computer hardware and software
in recent years has made it possible for engineers and designers to predict
structural behavior guite accurately. The advancement in structural
analysis techniques coupled with the increased understanding of structu-
ral behavior has made it possible for engineers to adopt the Limit States
Design philosophy. A limit state is defined as a condition at which a
structural sysiem oOr its component ceases to perform its intended
function under normal conditions (Serviceability Limit State) or failure
under severe conditions (Ultimate Limit State). The recently published
Load and Resistance Factor Design (LRFD) Specification by the
American Institute of Steel Construction (AISC) is based on the limit
states philosophy and thus represents a more rational appreach to the
design of steel structures.

This book is not therefore just another book that presents
Timoshenko’s basic elastic theory (S. P. Timoshenko and J. M. Gere,
*“Theory of Elastic Stability,” McGraw-Hill, 1961), or Bleich’s inelastic
buckling theory (F. Bleich, “Buckling Strength of Metal Structures,”
McGraw-Hill, 1952), or Chen's numerical analysis {W. F. Chen and T.
Atsuta, “Theory of Beam-Columns,” two-volume, McGraw-Hill, 1976,
1977) in a new style. Instead it presents theory and principles of
structural stability in its most up-to-date form. This velume includes not
only the state-of-the-art methods in the analysis and design of columns as
individual members and as members of a structure, but also an
introduction to engineers as to how these new developments have been
implemented as the stability design criteria for members and frames in
AISC/LRFD Specification.

This book is based on a series of lectures that Professor Chen gave at
Purdue University and Lehigh University under the general heading of
“Structural Stability.” The preparation of the 1985 T. R. Higgins
Lectureship Award paper entitled “Columuns with End Restraint and
Bending in Load and Resistance Factor Design™ for AISC Engineering
Journal (3rd Quarter, Vol. 22, No. 3, 1983) inspired us to attempt to
create a useful textbook for the undergraduate and beginning graduate
students in structural engineering as well as practicing structural en-
gineers who are less familiar with the stability design criteria of members
and frames in the newly published LRFD Specification.

Professor Chen wishes to extend his thanks to AISC for the 1985 T. R.
Higgins Lectureship Award, when the book began to take shape; to
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Professor H. L. Michael of Purdue University for continuing support
over many years, and to the graduate students, C. Cheng, L. Duan, and
F. H. Wu, among others, for preparing the Answers to Some Selected
Problems during their course work on Structural Stability in the spring
semester of 1986 in the School of Civil Engineering at Purdue University.

W.F. Chen

December, 1986 E.M. Lui

Wesr Lafayette, IN
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= strain energy due to warping restraint torsion
vV = —W.,, = potential energy
Wi = -{/=work done by the internal resisting forces
W.. = —V =work done by the external applied forces
II = U+ V =total potential energy

GEOMETRY AND DIMENSIONS

A = cross sectional area
b = flange width
Co = warping constant
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{ = Ar’=moment of inertia
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STABILITY RELATED FACTORS
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P — 6 moment amplification factor for beam-columns in
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NOTATION

LOAD AND MOMENT

P = axial load
*El
B = ’TLZ = Euler buckling load
P, = elastic buckling load
P _ mEl
ck - (KL)Q
= elastic buckling load considering column end conditions

B = failure load by the elastic—plastic analysis
F, = plastic collapse load or limit load by the simple plastic

analysis

E,
P = P = reduced modulus load
E,

P = PcE = tangent modulus load
P, = ultimate strength considering geometric imperfections and

material plasticity
F, AF, = yield load
M, = amplified (design) moment
M., = elastic buckling moment

x 5 5 .7':72 ECW
M. = Z VEI}-GJ V1+ W*, where W~ =zl- (—G}-)

elastic buckling moment under uniform moment
CnM, = equivalent moment

=

=q
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MNotation

moment at a section due to externally applied loads
internal resisting moment of the section

transition moment (in Plastic Design)

nominal flexural strength

ZF, = plastic moment

1.18Mpx[1 - (;)] <M,
y

for H-section about strong axis.
plastic moment capacity about the strong axis considering
the influence of axial load

1.19Mp,,[1 - (?H <M,

Y
for H-section about weak axis.

plastic moment capacity about the weak axis considering the
influence of axial load

ultimate moment capacity considering geometric imperfec-
tions and material plasticity

SF, = yield moment

d
GJ d—Y= St. Venant (or uniform) torsion
Z
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—EC,, El;: warping restraint (or non-uniform) torsion
Z

stress
stress tensor
strain
strain tensor

ENERGY AND WORK
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Chapter 1

GENERAL PRINCIPLES

1.1 CONCEPTS OF STABILITY

When a change in the geomectry of a structure or structural component
under compression will result in the loss of its ability to resist loadings,
this condition is called instability. Because instability can lead to a
catastrophic failure of a structure, it must be taken into account when
one designs a structure. To help engineers to do this, among other types
of failure, a new generation of designing codes have been developed
based on the concept of limit states.

In limit states design, the structure or structural component is designed
against all pertinent limit states that may affect the safety or performance
of the structure. Basically, there are two types of limit states: The first
type, Strength limit states, deals with the performance of structures at
their maximum load-carrying capacities. Examples of strength limit states
include structural failure due to either the formation of a plastic collapse
mechanism or to member or frame instability. Serviceability limit states,
on the other hand, are concerned with the performance of structures
under normal service conditions. Hence, they pertain to the appearance,
durability, and maintainability of a structure. Examples of serviceability
limit states include deflections, drift, vibration, and corrosion.

Stability, an important constituent of the strength limit states, is dealt
with explicitly in the present American Institute for Steel Construction
(AISC) limit state specification.! Although the importance of considering
stability in design is recognized by most practicing engineers, the subject
still remains perplexing to some. The reason for this perplexity is that the
use of first-order structural analysis, which is familiar to most engineers,
is not permissible in a stability analysis. In a true stability analysis, the

1



2 General Principles

change in geometry of the structure must be taken into account; as a
consequence, equilibrium equations must be written based on the
-geometry of a structure that becomes deformed under load. This is
known as the second-order analysis. The second-order analysis is further
complicated by the fact that the resulting equilibrinm equations are
differential equations instead of the usual algebraic equations. Conse-
quently, a mastery of differential calculus is a must before any attempt to
solve these equations.

In what follows, we will explain the nature of structural stability and
ways to analyze it accurately.

The concept of stability is best illustrated by the weil-known example
of a ball on a curved surface (Fig. 1.1). For a ball initially in equilibrium,
a slight disturbing force applied to the ball on a concave surface (Fig.
1.1a) will displace the ball by a small amount, but the ball will return to
its initial equilibrium position once it is no longer being disturbed. In this
case, the ball is said to be in a stable equilibrium. If the disturbing force is
applied to a ball on a convex surface (Fig. 1.1b) and then removed, the
ball will displace continuously from, and never return to, its initial
equilibrium position, even if the disturbance was infinitesimal. The ball in
this case is said to be in an unstable equilibrium. If the disturbing force is

FIGURE 1.1 Stable, unstable, and neutral
equilibrium
TS

{a) STABLE EQUILIBRIUM

i

ib) UNSTABLE EQUILIBRIUM

O -

{c) NEUTRAL EQUILIBRIUM
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(b}

FIGURE 1.2 Effect of finite disturbance

applied to the ball on a flat surface (Fig. 1.1c), the ball will attain a new
equilibrium position to which the disturbance has moved it and will stay
there when the disturbance is removed. This ball is said to be in a neutral
equilibrium.

Note that the definitions of stable and unstable equilibrium in the
preceding paragraph apply only to cases in which the disturbing force is
very small. These will be our definitions of stability. However, keep in
mind that it is possible for a ball, under certain conditions (Fig. 1.2), to
go from one equilibrium position to another; for example, a ball that is
“stable” under a small disturbance may go to an unstable equilibrium
under a large disturbance (Fig. 1.2a), or vice versa (Fig. 1.2b).

The concept of stability can also be explained by considering a system's
stiffness. For an n-degrees-of-freedom system, the forces and displace-
ments of the systemn are related by a stiffness matrix or function. If this
stiffness matrix or function is positive definite, the system is said to be
stable. The transition of the system from a state of stable to neutral
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equilibrium or from a state of stable to unstable equilibrium is marked by
the stability limit point. The tangent stiffness of the system vanishes at
just this point. We shall use the principle of vanishing tangent stiffness to
calculate the buckling load of a system in subsequent sections and
chapters.

Stability of an elastic systcm can also be interpreted by means of the
concept of minimum total potential energy. In nature, an elastic system
always tends to go to a state in which the total potential energy is at a
minimum. The system is in a stable equilibrium if any deviation from its
initial equilibrium state will result in an increase in the total potential
enerpy of the system. The system is in an unstable equilibrium if any
deviation from its initial equilibrium state will result in a decrease in total
potential energy. Finally, the system is in a neutral equilibrium if any
deviation from its initial equilibrium state will produce neither an
increase nor a decrease in its total potential energy. Because of this
principle, the energy concept can be used to find the buckling load of an
elastic system. The elastic buckling analysis by energy method will be
discussed in Chapter 6.

1.2 TYPES OF STABWITY

Stability of structures under compressive forces can be grouped into two
categories: (1) instability that associates with a bifurcation of equilibrium
(Fig. 1.3a); and (2) instability that associates with a limit or maximum
load (Fig. 1.3b).

1.2.1 Bifurcation Instability

This type of instability is characterized by the fact that as the compressive
load increases, the member or system that originally deflects in the
direction of the applied loads suddenly deflects in a different direction.
The point of transition from the usual deflection mode under loads to an
alternative deflection mode is referred to as the point of bifurcation of
equilibrium. The load at the point of bifurcation of equilibrium is called
the critical load. The deflection path that exists before bifurcation is
known as the primary or fundamental path and the deflection path that
exists subsequent to bifurcation is known as the secondary or
postbuckling path (Fig. 1.3a). Examples of this type of instability include
the buckling of geometrically perfect columns loaded axially, buckling of
thin plates subjected to in-plane compressive forces and buckling of rings
subjected to radial compressive forces.

Depending on the nature of the postbuckling paths, two types of
bifurcation can be identified: symmetric bifurcation and asymmetric
bifurcation (Fig. 1.4).
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FIGURE 1.3 Bifurcation and limit point buckling
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Load Load

,/, Pcr // PI::I

Deflectlon Deflection

{a) STABLE SYMMETRIC (b) UNSTABLE SYMMETRIC
BIFURCATION BIFURCATION

Load

\ P P
Soer
1/

Deflaction

{c) ASYMMETRIC BIFURCATION

FIGURE 1.4 Postbuckling behavior

Symmelric Bifurcation

For symmetric bifurcation, the postbuckling paths are symmetric about
the load axis. If the postbuckling paths rise above the critical load, the
system is said to exhibit a stable symmetric bifurcation. For such a system,
the load that is required to maintain equilibrium subsequent to buckling
increases with increasing deformation, as shown in Fig. 1.4a. Examples of
structures exhibiting stable postbuckling behavior include axially loaded
glastic columns and in-plane loading of the thin elastic plates (Fig. 1.5). If
the postbuckling paths drop below the critical load, the system is said to
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R

ta) GOLUMN BUCKLING (b} PLATE BUCKLING

FIGURE 1.5 Examples of stable symmetric buckling

exhibit an unstable symmetric bifurcation. For such a system, the load
that is required to maintain equilibrium subsequent to buckling decreases
with increasing deflection as shown in Fig. 1.4b. The guyed tower shown
in Fig, 1.6 is an example of a structure that exhibits an unstable
postbuckling behavior. As the tower buckles and deflects, some of the
cables are stretched, resulting in a detrimental pulling force on the tower.

Asymmetric Bifurcation

Figure 1.4c shows schematically the asymmetric bifurcation behavior of 2
system. For such a system, the load that is required to maintain
equilibrium subsequent to buckling may increase or decrease with
increasing deflection depending on the direction in which the structure
deflects after buckling. The simple frame shown in Fig. 1.7 is an example
of a structure that exhibits an asymmetric postbuckling behauior. If the
frame buckles according to Mode 1, the shear force V induced in the
beam will counteract the applied force P in the column. As a result, the
load required to maintain equilibrium after buckling will increase with
increasing deflection. On the other hand, if the frame buckles according
to Mode 2, the shear force V induced in the beam will intensify the
applied force P in the column. As a resuit, the load required to maintain
equilibrium after buckling will decrease with increasing deflection.
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FIGURE 1.6 Example of un-
stable symmetric buckling GUYED TOWER

1.2.2 Limit-Load Instability

This type of instability is characterized by the fact that there is only a
single mode of deflection from the start of loading to the limit or
maximum load (Fig. 1.3b). Examples of this type of iostability are
buckling of shallow arches and spherical caps subjected to uniform
external pressure {Fig. 1.8). For this type of buckling, once the limit load
is reached (Point A on the curve of Fig. 1.3b), the system will “snap
through™ from Point A to Point C, because the equilibrium path AB is
an unstable one. This unstable equilibrium path will never be encoun-
tered under a load controlled testing condition, but it does exist and can
be obscrved under a displacement controlled testing condition. The
phenomenon in which a visible and sudden jump from one equilibrium
configuration to another nonadjacent equilibrium configuration upon
reaching the limit load is referred to as snap-through buckling.

Another type of buckling that is unique to shells under compressive
forces (Fig. 1.9a} is referred to by Libove in reference 2 as finite-
disturbance buckling. For this type of buckling the compressive force
required to maintain equilibrium drops considerably as the structure
buckles after reaching the critical load as shown in curve (i} of Fig. 1.9b.
In fact, in reality the theoretical critical load will never be reached
because of imperfections. The slightest imperfections in such structures
will reduce the critical load tremendously and so curve (ii) in the figure
will be more representative of the actual buckling behavior of the real
structure.
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{b} Mede 2 1

\ Load
Mode 1
A Nﬁe 2

PB!

-

Dellection

FIGURE 1.7 Example of asymmetric buckling

Finite disturbance buckling has the features of both bifurcation
buckling and snap-through buckling. It resembles the former in that the
shell deflects in one mode before the critical load is reached, but then
deflects in a distinctly different mode after the critical load is reached. It
resembles the latter in that a slight disturbance may trigger a jump from
the original equilibrium configuration that exists before the critical load
to a nonadjacent equilibrium configuration at finite defiections as
indicated by the dotted line in the figure.
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(b) SPHERICAL CAP

FIGURE 1.8 Examples of limit point buckling

FIGURE 1.9 Shell buckling

Load

Deflection

(b)
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1.3 METHODS OF ANALYSES IN STABILITY

The concept of stability as described in Section 1.1 can be used to
determine the critical conditions of an elastic system that is susceptible to
instability.

Bifurcation Approach

The first approach is called the bifurcation approach. In this approach,
the state at which two or more different but adjacent equilibrium
configurations can exist is sought by an eigenvalue analysis. The lowest
load that corresponds to this state is the critical load of the system. At the
critical load, equilibrium can be maintained with alternative deflection
modes that are infinitesimally close to one another.

To determine the critical load using the bifurcation approach, it is
necessary to identify all possible equilibrium configurations the system
can assume at the bifurcation load. This can best be accomplished by
specifying a set of generalized displacements to describe all the possible
displaced configurations of the system. If n parameters are required to
describe the various modes of deflections, the system is said to have n
degrees of freedom. For an n-degrees-of-freedom system, the deter-
minant of the n X n-system-stifiness matrix, which relates the generalized
forces to the generalized displacements of the system, is a measure of the
stiffness of the system. At the critical load, the tangent stiffness of the
system vanishes. Thus, by setting the determinant of the system’s-
tangent-stiffness matrix equal to zero, the system’s critical conditions can
be identified.

The bifurcation approach is also known as the eigenvalue approach,
because the technique used is identical to that used in the linear algebra
for finding eigenvalues of a matrix. The critical conditions are repre-
sented by the eigenvalues of the system’s stiffness matrix and the
displaced configurations are represented by the eigenvectors. The lowest
eigenvalue is the critical load of the system. The bifurcation or eigenvalue
approach is an idealized mathematical approach to determine the critical
conditions of a geometrically perfect system. If geometrical imperfections
are present, deflection will commence at the beginning of loading. The
problem then becomes a load-deflection rather than a bifurcation
problem. For a load-deflection problem, the bifurcation approach cannot
be applied.

Energy Approach

Another way to determine the critical conditions of a system is the
energy approach. For an elastic system subjected to conservative forces,
the total potential energy of the system can be expressed as a function of
a set of generalized displacements and the external applied forces. The
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term ‘“‘conservative forces” used here are those forces whose potential
energy is dependent only on the final values of deflection, not the specific
paths to reach these final values. If the system is in equilibrium, its total
potential energy must be stationary. Thus, by setting the first derivative
of the total potential energy function with respect to each generalized
displacement equal to zero, we can identify the equilibrium conditions of
the system. The critical load can then be calculated from the equilibrium
equations.

Please note that by setting the first derivative of the total potential energy
function equal to zero, we can only identify the equilibrium conditions of
the system. To determine whether the equilibrium is stable or unstable,
we must investigate higher order derivatives of the total potential energy
function.

Dynamic Approach

The critical load of an elastic system can also be obtained by the dynamic
approach. Here, a system of equations of motion governing the small free
vibration of the system is written as a function of the generalized
displacements and the external applied force. The critical load is obtained
as the level of external force when the motion ceases to be bounded. The
equilibrium is stable if a slight disturbance causes only a slight deviation
of the system from its original equilibrium position and if the magnitude
of the deviation decreases when the magnitude of the disturbance
decreases. The equilibrium is unstable if the magnitude of motion
increases without bound when subjected to a slight disturbance. The use
of the dynamic approach requires a prerequisite of structural dynamics.
This is beyond the scope of this book. However, the use of the other two
approaches to determine the critical loads will be illustrated in the
following sections. In the following examples, both the small and large
deflection analyses will be used to demonstrate the significance and
physical implications of each analysis,

1.4 ILLUSTRATIVE EXAMPLES—SMALL DEFLECTION ANALYSIS

In this section, the stability behavior of some simple structural models
will be investigated in the context of a smail deflection analysis by using
both the bifurcation and energy approaches.

1.4.1 Rigid Bar Supported by a Rotational Spring

Consider the simple spring—bar system shown in Fig. 1.10a. The bar is
assumed to be rigid, and the only possible mode of displacement for the
system is the rigid body rotation of the bar about the pinned end as
shown in Fig. 1.10b. The pinned end is supported by a linear rotational
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I

fa)

FIGURE 1.10 Rotational spring-supporied rigid bar system (small deflection
analysis)

spring of stiffness k.. When the rigid bar is perfectly horizontal, the
spring is in an unstrained state, and we shall denote any rotational
displacement of the bar from this horizontal position by the angle 6.

The system will become unstable and buckle when P reaches its critical
value, P.,. We shall use the two methods already discussed to determine
this initial value.

Bifurcation Approach

Assuming the rotational displacement & is small, then the equilibrium
condition of the bar at its displaced configuration can be written in the
simple form as

kg—PLE=0 (1.4.1)
This equation 15 always satisfied for 6 =0. The horizontal position or

8 =0 is therefore a trivial solution. For a nontrivial solution, we must
have

ks
P=Po=7 (1.4.2)

Equation (1.4.2) indicates that when the applied force P reaches the
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value of k./L, the system will buckle. At this critical load, equilibrium
for the bar is possible in both the original horizontal and slightly deflected
positions.

Energy Approach

In using the energy approach to determine F,, one must write an
expression for the total potential energy comprising the strain energy and
the potential cnergy of the system. The strain energy stored in the system
as the bar assumes its slightly deflected configuration is equal to the strain
energy of the spring:

U = ik, 6° (1.4.3)

The potential energy of the system is the potential energy of the external
force and it is equal to the negative of the work done by the external
force on the system:

V=-PL(1l—cos8) (1.4.4)

The term L{1 — cos &) represents the horizontal distance traveled by P as
the bar rotates.

The total potential enmergy is the sum of the strain energy and the
potential energy of the system:

M= U+ V =4k~ PL(1~cos §) (1.4.5)

For equilibrium, the total potential energy must assume a stationary
value. Thus, we must have

dn

i 0
or
k,8—PLsin6=0 (1.4.6)
For small 8, sin 8 = 8, therefore, we have
k8 —PLB=0( (1.4.7)

Equation (1.4.7) is the equilibrium equation of the bar-spring system.
The same equilibrium equation [Eq. (1.4.1)] has been obtained by
considering equilibrium of a free body of the bar. The nontrivial solution
for Eq. (1.4.7) is thus the critical load of the system.
k
P=p, =2 1.4.8
- (1.4.8)
This value of the critical load is the same as that determined earlier by
the bifurcation approach. Note that in the energy approach we can
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determine not only the critical load, P, but also the nature of the
equilibrium of this system. That is, we can further determine whether the
equilibrivm of the system is stable or unstable at various stages of
loading.

To determine whether the equilibrium is stable or unstable for the
system In its original (& =0} paosition, we need to investipate the
positiveness or negativeness of higher derivatives of the total potential
energy function. For this problem, if we take the second derivative of the
total potential energy function given in Eq. {1.4.5), we have

2
£3=k5—PL cos 0=k, — PL (1.4.9)

de
Thus, for P < P,,, d*I1/d6 is positive. This indicates that the equilibrium
is stable. For P > P.., d*11/d6” is negative, and the equilibrium condition
is therefore unstable. This behavior is illustrated in Fig. 1.11, in which the
applied force P is plotted as a function of @ for small values of 6. The
solid line represents a stable equilibrium loading path and the dotted line
represents an uustable equilibrium path. The bar is in a stable equi-
librium in the horizontal (8 =0) position when P <Z,, but becomes
unstable in that position when P> P,. For P= P, d*[1/d6#*=0 in a

FIGURE 1.11 Stability behavior of spring-bar system (small deflection analysis)
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small & analysis and so no conclusion can be drawn. However, as will be
demonstrated in the next section, the stability condition at the critical
load (P = P.;) can be investigated using the energy approach with a large
6 analysis.

1.4.2 Rigid Bar Supported by a Translational Spring

Figure 1.12a shows a rigid bar hinged at one end and supported by a
linear translational spring of stiffness k, at the free end. The spring is
assumed to be able to move freely in the horizontal direction but retains
its vertical orientation as the bar deflects. The bar is subjected to a
concentrated force P at the free end. Assuming the system is geometri-
cally perfect, we shall determine the critical load of the system.
Bifurcation Approach

In Fig. 1.12b we see a slightly deflected position of the bar. Consideration
of equilibrium of the bar gives

k10— PLE=0 (1.4.10)

This condition is always satisfied by the trivial solution # ={. Fer a

FIGURE 1.12 Translational spring-supported rigid bar system (small deflection

analysis)
| K,
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nontrivial solution, we must have
P=P.=kL (1.4.11)

Energy Approach

The strain energy of the system at its deflected state is equal to the strain
energy stored in the structural spring.

U =1k (LO) (1.4.12)

The potential energy of the system is cqual to the negative of the work
done by the applied force.

V =—PL(1—cos 6) (1.4.13)
The total potential energy is
M=U+V =1k, (L0)*~ PL(1—cos 8) (1.4.14)
For equilibrium, the first derivative of IT with respect to 8 must vanish.
j—g= k L6 — PLsin 6 =0 (1.4.15)
For small 8, Eq. (1.4.15) can be written as
k,L*6 —PL6=0 (1.4.16)

This equilibrium equation is identical to that of Eq. (1.4.10). Therefore,
the nontrivial solution is

P=P,=kL (1.4.17)

To investigate the nature of equilibrium of the system in its original
(6 = 0) paosition, we need to perform higher order derivatives of the total
potential energy function. By taking the second derivative of the total
potential energy function given in Eq. (1.4.14), we have

d’l 2 2

&?=k5L —PLcos =k L°—PL (1.4.18)
Thus, for P < P.., d*I1/d6* is positive, so the system is stable, but for
P> P.., d°T1/d8” is negative, so the system is unstable in its original
(6 = 0) position.

1.4.3 Two-Bar System

Consider the two-bar system shown in Fig. 1.13a. The two bars are linked
together by a frictionless pin at C and the entire system is supported at
three locations. The supports at B and D are hinged. The support at C is
a spring with spring stiffness &, The bars are subjected to
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FIGURE 1.13 Two-bar system

a compressive force P at the ends. As P increases, a condition will be
reached at which the bars will assume a slightly defiected position. This
deflected position can be defined uniquely by a single parameter 8 as
shown in Fig. 1.13b.

Bifurcation Approach
Summing moments about B for the free body shown in Fig. 1.13b gives

P(%E) — K, LO(L) + Rp(2L) =0

from which. we solve for

_ 2k,L— PO

Ry 1

(1.4.19)



1.4 Wustrative Examples—Small Deflection Analysis 19

Summing moment about C for the free body in Fig. 1.13c gives

RpL — PLO =0 (1.4.20)
Upon substitution of Eq. (1.4.19) into Eq. (1.4.20), we obtain
3. L8 —35P6 =0 (1.4.21)

The nontrivial solution for the equilibrivm equation (1.4.21) gives the
critical load of the system as

P=F.=%kL (1.4.22)
Energy Approach
The strain energy of the system is

U=13k(LB) (1.4.23)

The potential energy of the system is
V=-P[L(1—cos @)+ L(1—cos )
+3L(1—cos 8)]

=—P[EL(1 —cos 8)] (1.4.24)
The total potential energy of the system is
M=U+V=1k,(L0)*~ P3L(1 - cos 6)] (1.4.25)
For equilibrium, we must have
%161=k,L26— SPLsing=0 (1.4.26)
and for small 8, we have
k. L0 —SPLO=k LB ~3PH=0 (1.4.27)
The critical load is obtained as the nontrivial solution of Eq. (1.4.27).
P=P,=%k.L (1.4.28)

The nature of equilibrium of the system in its original {# = 0) position
can be studied by observing higher derivatives of the total potential
energy function. By taking the second derivative of the total potential
energy function, we have

o
dae?
For P <P, d°T1/d6” is positive, so the system is stable. For P> P.,

d*T1/d6” is negative, so the system is unstable in its original undeflected
position.

=k L'—%PLcos@~kL*—3PL (1.4.29)



20 General Principles

1.4.4 Three.Bar System

Figure 1.14a shows a three-bar system supported at the ends A and D by
frictionless hinges and connected to one another at B and C by linear
rotational springs of spring stiffness k,. The system is assumed peometri-
cally perfect in that the springs are unstrained when all the bars are in
their horizontal orientation. We shall now determine the critical load P.,
of the system.

Bifurcation Approach

In using the bifurcation approach, we are investigating the equilibrium
conditions of the system in a slightly deflected configuration. A
configuration of the system displaced by an arbitrary kinematic admis-
sible displacement is shown in Fig. 1.1d4b. A kinematic admissible
displacement is a displacement that does not violate the constraints of the
system. Notc that the two parameters (€, and 6,) are necessary to
describe fully the displaced configuration of the bars. Thus, the system is
said to have two degrees of freedom.

It is clear from equilibrium consideration that the support reactions at

FIGURE 1.14 Three-bar system

k128, - 6,1 k,(25,~ 8,
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A and D are zeros. By using the free body diagrams of the left and right
bars, respectively (Fig. 1.14c), we can write the following equilibrium
equations:

k(28,—0,)— P(LB)=0, (1.4.30a)
k.(28,—6,)— P(LO;)=0. (1.4.30b)
In matrix form, we have
2k, — PL- —k, 61) _ (O)
[ —k, st—PL](eg oS (1.4.31)

For a nontrivial solution, we must have the determinant of the coefficient
matrix equal to zero

2k, — PL -k,

det| . ok—pL

' =k, —PLY— k=0  (1.4.32)

Equation (1.4.32) is the characteristic equation of the system. The two
eigenvalues are

k.
P_f {1.4.33a)
and
3k,
P—T' {1.4.33b)

The corresponding eigenvectors are

(321) = G) (1.4.34a)

(gl) - (_i) (1.4.34b)

The two deflected configurations of the systern that correspond to the
eigenvectors Eqs. (1.4.34a, b) are sketched in Fig. 1.15. Since the lowest
value of the eigenvalue is the critical load of the system, we therefore
have

and

k
P=P,=— 1.4.35
. (1.4.35)

and the symmetric mode (Fig. 1.15aj is the buckling mode of the system.
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FIGURE 1.15 Buckling modes of the three-bar system

Energy Approach

For the system shown in Fig. 1.14, the strain energy is equal to the strain
energy stored in the two springs.

_1 _ 2,1 — 2
5 1 2%y N )
U = 3k, (206, — B2)2 + 3k.(26 — 6) (1.4.36)

The potential energy is equal to the negative of the work done by the
external forces.

V=~=PL[{(1-cos8;)+ (Il —cos 8,) + 1 —cas (8, — 8.)]
=—PL{3 —cos &, - cos &, —cos (6, — 8.)] (1.4.37)

The total potential energy of the systcm is equal to the sum of the strain
energy and the potential energy.
n=uv+Vv
= 3k(26, ~ 6,)* + 3k.(26, - 6,)°

— PL[3—cos 8, —cos 0, —cos (6, — 6,)] {1.4.38)
For equilibrium, the total potential energy of the system must be
stationary. In mathematical terms, this requires

311

— =2k 208, - 6;) — k(26,— 6))

a6,

— PL[sin 8, +sin (6, - 6,)] =0 (1.4.39z)
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oIl
36,

= —k (26, — 6,) + 2k, (20, - 8y)
— PL[sin 8, —sin (8, - 6,)] =0 (1.4.39b)

Upon simplification and using small angle approximation, we can write
Egs. (1.4.39a and b) in matrix form as

[Sks—zPL —4k5+PL](61)_(0) 440
—4k,+PL 5k,—2PL1\6,/ \0 (1.4.40)
For nontrivial solution, we must have
Sk,—2PL —4k,+ PL
det = 4.4
© 1—4k._+PL Skﬁ—ZPL’ 0 (1.4.41)
from which the two eigenvalues are
k
p== 4.42
7 (1.4.42a)
or
3k
p=2% 1.4.42b
’ (14.420)

The smallest eigenvalue is the critical load of the system, therefore

k
P=Pcr=f (1.4.43)
To study the nature of equilibrium for the system in its undeflected
(8, = 0,=0) position, we need to investigate higher order derivatives of
the total potential energy function. By taking the second derivative of the
total potential energy function, we have

811
—— =5k, ~ PL[cos 8, + cos (6, — 8,)]
307
=5k, —~2PL (1.4.44a)
311
g&jz Sks - PL[COS 82 + cos (61 - 62)]
~5k.— 2PL {1.4.44b)
511 -
361362__ Q+PLC05(6]—62)

= —dk, + PL (1.4.44c)
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The equilibrium is stable if all of the following conditions are satisfied:

a1
> 4,45
35 0 (1.4.45a)
FuU_, (1.4.45b)
303 o
3T\ /&1 T N\?
(522)Gar) > (zo,353) (1.4.45¢)
In view of Eqs. {1.4.44a~c), Equations (1.4.45a—c) become
57k
P<=z (—3) .4.46
S\T (1.4.46a)
57k
P<- (-—5) 1.4.46b
I\T ( )
(k, — PL)(9k,~ 3PL)>0 (1.4.46¢)

For P <k,/L, all the inequalities expressed in Eqs. (1.4.46a—~c) will be
satisfied. Therefore for P <k,/L, the equilibrium position 8, =8, =0 is
stable, whereas for P > k. /L it is unstable.

1.5 ILLUSTRATIVE EXAMPLES—LARGE DEFLECTION ANALYSIS

In the foregoing analyses of the simple bar-spring models, the assumption
of small defiection has been used because in these examples we are only
interested in identifying the critical conditions and finding the critical
loads of the system. Such an analysis is known as a linear eigenvalue
analysis. Although, in addition to determining the critical loads, it is
possible for us to investigate the nature of the equilibrium conditions of
the systems in their undeflected configurations by studying the second
derivatives of the total potential energy functions, a linear eigenvalue
analysis can provide us with no information about the behavior of the
systems after the critical loads have been reached. In other words, if the
analysis is performed using the small displacement assumption, it is not
possible to study the posthuckling behavior of the system. To study the
postbuckling behavior of a system, we must use large displacement
analysis. This is illustrated in the following examples.

1.5.1 Rigid Bar Supported by a Retational Spring

Consider the simple one degree of freedom spring-bar system shown in
Fig. 1.16. This simple mode! has been analyzed earlier using the small
displacement -assumption. The critical load was found to be P = k,L and
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ial

{3

FIGURE 1.16 Rotational spring-supported rigid bar system (large deflection
znalysis)

by studying the nature of the second derivative of the total potential
energy function, we concluded that the equilibrium position that cor-
responds to the initial {straight) configuration of the bar was stable if
P<PF,, but it became unstable if P>F, (Fig. 1.11). However, no
information about the nature of equilibrium can be obtained when
P =F, nor do we have any knowledge about the postbuckling behavior
of the system. To obtain such information, it is necessary to perform a
large displacement analysis as shown in the following.

Energy Approach

Although we could readily use the bifurcation approach to determine
both the equilibrium paths of a system in a large displacement analysis
and the critical load obtained at the point of intersection of the
fundamental and postbuckling path(s), we will use the energy approach
instead because, in addition to obtaining the critical load, with this
second approach we can also investigate the stability of the postbuckling
equilibrium paths of the system by examining the characteristic of the
higher order derivatives of the total potential energy function.
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The strain energy of the system is equal to the strain energy of the
~ spring
U=1k.6% (1.5.1)
The potential energy of the system is the potential energy of the
external force

V=—-PL(1—cos ) (1.5.2)
The total potential energy of the system is then
N=U+V =3k,0°— PL(1 — cos 8) (1.5.3)
For equilibrium, we must have
T
E=k59—PL sin =10 (1.5.4)

This equilibrium equation is satisfied for all values of P if 8 =0(. This
trivial equilibrium path is the fundamental equilibrium path. It is plotted
in Fig. 1.17. Note that this path is coincident with the load axis. The

FIGURE 1.17 Equilibrium paths of the spring-bar system shown in Fig. 1.16
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postbuckling path is given by

k. B
=1 1.5.5
F Lsin® (1.5.9)

This path is also plotted in Fig. 1.17 for the range —7/2<8=<=x/2. It
intersects the fundamental path at P, = &,/L.

To study the stability of the equilibrium paths, we need to examine the
higher order derivatives of the total potential energy function. By taking
the second derivative of I1, we have

ail
' d_az_k‘_PL cos 6 (L.5.8)
For the fundamental path, 8 =0, therefore Eq. (1.5.6) becomes
a1l
W—ks—PL (1.5.7)

The quantity d°I1/d0? changes from positive to negative at P= P, =k /
L, indicating that the initial horizontal position of the bar is stable if
P <P, but unstable it P> B,..

For the postbuckling path, P=k.6/Lsin 8, therefore Eq. (1.5.6)
becomes

d°T1 k.G
FrE (Lsin G)Lcose
7}

/" The quantity 4°I1/d6” is always positive since the quantity in parenthesis
is always greater than zero, indicating that the postbuckling path is
always stable. )

At the critical point (P = P..=k,/L), d*T1/d6" is zero according to Eq.
(1.5.7), so no information concerning the stability of the system can be
obtained. To investigate the stability of this critical equilibrium state, we
need to examine the first nonzero term in a Taylor series expansion for
I1. Using a Taylor series expansion for the total potential encrgy function
about 8 =0, we obtain

14711
§=0 o+ 2 d6°

1 4°I
t-— | P+
6d6° p—g  24d8°

It can easily be shown that the first four terms in Eq. (1.5.9) are zeros,

L4
o-0  d6

141

62

2=0

=11

AT (1.5.9)

=0
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thus the first nonzero term of the series is the fifth term

1d‘n s L .
| 54 da* He =54 PLO (1.5.10)
At P= P, =k,/L, we have
1 1
EPL94=£1¢594 {1.5.11}

which is positive, indicating that IT is a local minimum and so the
equilibrium state at the critical point is stable.

From the above discussion it can be seen that as P increases gradually
to P., the stable fundamental equilibrium path bifurcates into an
unstable equilibrium path corresponding to the original horizontal
position of the bar and a stable postbuckling equilibrium path cor-
responding to the deflected configuration of the bar. The equilibrium
state at the critical point is stable. The stable postbuckling equilibrium
path is symmetric about the load axis, indicating that the bar can defiect
either upward or downward with no particular preference.

1.5.2 Rigid Bar Supported by a Translational Spring

Consider now the one degree of freedom bar-spring system shown in Fig.
1.18. This model has been analyzed earlier using the small displacement
assumption. The critical load was found to be P, =k, L. To study the
postbuckling behavior, we must use the large deflection analysis.

Energy Approach

Here, as in the previous example, the energy approach is used. The strain
energy of the system is

U = 3k (L sin 8)* (1.5.12)
The potential energy of the system is
V=—-PL(1—cos8) (1.5.13)
The total potential energy of the system is
I=U+V =1k (Lsin 8)° — PL(1 - cos 8) (1.5.14)
For equilibrium, we must have
-3%1 =k, L*sin @ cos 8 — PLsin#

= (ksL*cos 8 — PL)sin 6 =0 (1.5.15)

This equilibrium equation is satisfied for all values of P when 6 =0,
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FIGURE 1.18 Translational spring-supported rigid bar system (large deflection
analysis)

which is the fundamental equilibrium path (Fig. 1.19). The postbuckling
path is given by

P=k,Lcosé (1.5.16)
The fundamental and postbuckling paths are plotted in Fig. 1.19 for the

range —n/2< 8 <um/2. They intersect at P=P..=k,L.
To study the stability of the equilibrium paths, we form

dzn 2 2 el
Wr_k‘L (cos* & —sin” 8) — PLcos 6 (1.5.17)

For the fundamental path, 8 =0, Eq. (1.5.17) thus becomes

d*1l

oz =kLP = PL (1.5.18)

The quantity 4°I1/d8* changes from positive to negative at P = P, =k L,
which indicates that the initial horizontal position of the bar is stabie if
P < P, but unstable if P> P...
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FIGURE 1.19 Equilibrium paths of the spring-bar system shown in Fig. 1.18

For the postbuckling path, P =%.L cos 8, Eq. (1.5.17) thus becomes

d?I1 s
T k.L“(cos” 0 —sin” 8) — (kL cos 8)L cos &
= —k.L*sin" 6 (1.5.19)

The quantity d*[1/d6* is always negative, indicating that the postbuckling
path is unstable.

At the critical point (P = P.. = k,L), 4°I1/6? is zero according to Eq.
(1.5.18). As a result, we need to expand the total potential energy
function in a Taylor series and examine the first nonzero term in the
series. If we substitute the expression for IT and its derivatives into the
Taylor series, Eq. (1.5.9), it can be shown that the first nonzero term is

1d't

1
20 d5 |, O =5 AL+ PLO (15.20)
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At P=P.=k.L, we have

1

—3 (~4kL*+ PL)O* = k. 176" (1.5.21)

which is negative, indicating that Il is a local maximum and so the
equilibrium state at the critical point is unstable.

From the above discussion, it can be seen that as P increases gradually
to P,, the stable fundamental equilibrium path bifurcates into an
unstable equilibrium path corresponding to the original horizontal
position of the bar and an unstable equilibrium path corresponding to the
deflected configuration of the bar. The equilibrium state at the critical
point is also unstable,

1.6 ILLUSTRATIVE EXAMPLES—IMPERFECT SYSTEMS

Note that for all the examples presented in the preceding sections it has
been assumed that the systems are geometrically perfect. When the bars
are in their horizontal positions, the springs are unstrained at the
commencement of the loadings. The systems will therefore remain
undeflected until the values of P reach their critical values, P... Suppose
now that the systems are imperfect in the sense that the bars are slightly
tilted when the springs are unstrained. The bar will deflect as soon as the
load is applied. The probiem then becomes a foad-deflection problem.
The following examples will illustrate the effect of this imperfection on
the response of the systems.

1.6.1 Rigid Bar Supported by a Rofational Spring

Consider the one-degree-of-freedom-imperfect-bar-spring system shown
in Fig. 1.20, The system is imperfect in that the bar is tilted slightly by an
angle 8y, and at this tilted position the spring is unstretched. We shall now
study the behavior of the system using the energy approach.

Energy Approach

The strain energy of the system is equal to the strain energy stored in the
spring

U=k (09— 0.) (1.6.1)

The potential energy of the system is equal to the potential energy of
the external force

V = —PL(cos 8,— cos 8) (1.6.2)
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FIGURE 1.20 Rotational spring-supported imperfect rigid bar system

The total potential energy of the system is
N=U+V=1k(8— 8, — PL(cos 8, — cos B) (1.6.3)

For equilibrium, the total potential energy of the system must be
stationary

dIl ‘
— =k (0—0;)—PLsin6=0 (1.6.4)
de
from which, we obtain
_ ks(ﬂ - BD)
P= Y (1.6.5)

The equilibrium paths given in Eq. (1.6.5) for f,=0.1 and 0.3 are
plotted in Fig. 1.21. The figure also shows the equilibrium paths for the
corresponding perfect system that was discussed earlier (Fig, 1.17). For
the imperfect system, deflection commences as scon as the load is
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FIGURE 1.21 Equilibrium paths of the imperfect spring-bar system shown in
Fig. 1.20

applied. The smaller the imperfection, the closer the equilibrium paths of
the imperfect system is to that of the perfect system. In fact, if the
imperfection vanishes, the equilibrium paths of the imperfect system will
collapse onto the equilibrium paths of the perfect system.

To study the stability of the equilibriutn paths of the imperfect system,
we need to examine the second derivative of the total potential energy
function :

'z
i——;;I:ks—PL cos 6 (1.6.6)

Therefore, the equilibrium paths are stable if

k, (1.6.7)

P<
Lcos@
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and they are unstable if

ks
Lcos@

P> (1.6.8)

It is quite obvious that Eq. (1.6.7) always controls for —n/2 < 8 < a/2.
Therefore, the equilibrium paths described by Eq. (1.6.5) are always
stable, indicating that as P increases the deflections increase, as shown by
the curves with the initial angle 8,=0, 0.1 and 0.3, and no instability will
occur. The maximum load that the system can carry is greater than the
critical load, P...

1.6.2 Rigid Bar Supported by a Translation Spring

Comsider now the imperfect system shown in Fig. 1.22. The system is
imperfect, being tilted by an angle 8, when the spring is unstretched.
We shall now use the energy approach to study the response of this
imperfect system.

FIGURE 1.22 Translational spring-supported imperfect rigid bar system
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Energy Approach
The strain energy of the system is equal to the strain energy stored in the

spring
{7 = Lk, L(sin 8 — sin @,)° (1.6.9)

The potential energy of the system is equal to the potential energy of
the external force

V =—PL(cos 8, — cos B) (1.6.10)
The total potentia! energy of the system is
M= U+ V =1k L(sin # —sin 0)°
— PL{cos 8y —cos 8) (1.6.11)
Far equilibrium, we must have
dll 240 . .
T k,L*(sin @ —sin 8y)cos § — PLsin @ =10 (1.6.12)

from which, we obtain

sin 60)

P=kLcos 9(1 - —
sin @

(1.6.13)

The equilibrium paths described by Eq. (1.6.13) for 6;=0.1 and 0.3
are plotted in Fig. 1.23. The equilibrium paths for the corresponding
perfect system are also shown in the figure. Again, as in the preceding
example, as the imperfection 8y approaches zero, the equilibrium paths
of the imperfect system collapse onta the equilibrium paths of the perfect
system. The maximum loads P, (the peak points of the load-deflection
curves) that the imperfect system can carry are less than the critical load
P, of the corresponding perfect system. These maximum loads can be
evaluated by setting

Z—g = ksL(— sin 8 + :zzeg) —0 (1.6.14)
from which we obtain the condition
sin 8, =sin’ 8 (1.6.15)
Substitution of Eq. (1.6.15) into Eq. (1.6.13) gives
P=Pn,=klLcos 8 (1.6.16)

The locus of the maximum loads as described by Eq. (1.6.16) is plotted in
Fig. 1.23 as a dash-and-dotted line. Note that Py, is always less than F,,,
except at 8 =0, when Py, becomes F,. The larger the imperfection the
smaller P, will be. '
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FIGURE 1.23 Equilibrium paths of the imperfect spring-bar system shown in
Fig. 1.22

To study the stability of the equilibrium paths described by Eq.
(1.6.13), we need to examine the second derivative of the total potential
energy function.

4’1 5 . .
Fro k,L*{cos* 8 —sin”® @ +sin 8, 5in §)
—~PLcos 8 l (1.6.17)

Upon substitution of Eq. (1.6.13) for P into the above equation and
simplifying, we obtain

d*11 2(sin 8, — sin’® 9)
— = —————— 1.6.1
d6? kL sin 9 (1.6.18)

Thus, for the range —x/2 = 8= 7/2, the equilibrium paths given by Eq.
(1.6.13) will be stable if

sin 8 > sin® 8 (1.6.19)
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and they will be unstable if
sin 8, <sin® 8 (1.6.20)

So, it can be seen that the rising equilibrium paths are stable and the
falling equilibrium paths are unstable. As the load P is increased from
zero, the load-deflection behavior of the imperfect system will follow the
stable rising equilibrium paths as shown in Fig. 1.23, until P, is
reached, after which the system will become unstable.

From the foregoing examples of imperfect systems, we can conclude
that for a system with stable postbuckling equilibrium paths, a small
imperfection will not significantly affect the system’s behavior. The
maximum load the imperfect system can carry is larger than the critical
load of the perfect system. On the other hand, for a system with unstable
postbuckling equilibrium paths, a small imperfection may have a notice-
able effect on the system's behavior. The maximum load that the
imperfect system can carry is then smaller than the critical load of the
perfect system, and the magnitude of this maximum load decreases with
increasing imperfection.

1.7 DESIGN PHILOSOPHIES

To implement the mathematical theory of stability into engineering
practice, it is necessary to review the various design philosophies and
safety concepts upon which current design practice is based. Details of
this implementation on various specific subjects will be given in the
chapters that follow.

At present, design practice is based on one of these three design
philosophies: Allowable Stress Design, Plastic Design, and Load and
Resistance Factor Design. A brief discussion of these design philosophies
will be given in the following sections.

1.7.1 Allowable Stress Design

The purpose of allowable stress design {ASD) is to cmsure that the
stresses computed under the action of the working, i.e., service loads, of
a structure do not exceed some predesignated aflowable values. The
allowable stresses are usually expressed as a function of the yield stress or
ultimate stress of the material. The general format for an allowable stress
design is thus

R ”
n . 1.7.1
7S %Qm (1.7.1)
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where

R, = nominal resistance of the structural member expressed in unit of
stress
O, = nominal working, or service stresses computed under working
load conditions
F.§. = factor of safety
i = type of load (i.e., dead load, live load, wind load, etc.)
m = number of load type

The left hand side of Eq. (1.7.1) represents the allowable stress of the
structural member or component under various loading conditions (for
example, tension, compression, bending, shear, etc.). The right hand side
of the equation represents the combined stress produced by various load
combinations (for example, dead load, live load, wind load, etc.).
Formulas for the allowable stresses for various types of structural
members under various types of loadings are specified in the AISC
Specification.” A satisfactory design is when the stresses in the member
computed using a first-order analysis under working load conditions do
not exceed their allowable values. One should realize that in allowable
stress design, the factor of safety is applied to the resistance term, and
safety is evaluated in the service load range.

1.7.2 Plastic Design

The purpose of plastic design (PD) is to ensure that the maximum plastic
strength of the structural member or component does not exceed that of
the factored load combinations. It has the format

1]

R,zvY, Ou (1.7.2)
i=1
where

R, = nominal plastic strength of the member
@, =nominal load effect (e.g., axial force, shear force, bending
moment, etc.)
¥ = load factor
i = type of load
m = number of load types

In steel design, the load factor is designated by the AISC Specification®
as 1.7 if O, consists of only dead and live gravity loads, or as 1.3 if 0,
consists of dead and live gravity loads plus wind or earthquake loads. The
use of a smaller load factor for the latter case is justified by the fact that
the simultaneous occurrence of all thesg load effects is not very likely.
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Note that in plastic design, safety is incorporated in the load term and is
evaluated at the ultimate (plastic strength) limit state.

1.7.3 Load and Resistance Factor Design

The purpose of load and resistance factor design (LRFD) is to ensure
that the nominal resistance of the structural member or component
exceeds that of the load effects. Two safety factors are used, one applied
to the loads, and the other to the resistance of the materials, Thus, the
load and resistance factor design has the format

OR. = D, ¥iQui (1.7.3)
i=1

where

R, =nominal resistance of the structural member
O, =load cffect (e.g., axial force, shear force, bending moment,
etc.)
¢ = resistance factor (=1.0)
v, = load factor (usually >1.0) corresponding to Q,;
i = type of load
m = number of load types

In the 1986 LRFD Specification,' the resistance factors were developed
mainly through calibration,” whereas the load factors were developed
based on statistical analysis.™® In particular, the first-order probability
theory is used. The load and resistance factors for various types of
loadings and various load combinations are summarized in Tables 1.1 and
1.2, respectively. A satisfactory design is the one in which the probability
of the structural member exceeding a limit state (for example, yielding,
fracture, buckling, etc.) is minimal. Based on the first-order second-
moment probabilistic analysis,” the safety of the structural member is
measured by a reliability or safety index* defined as

_In (R./0,) ]
where y Vi+ Vs (1.7.4)

R = mean resistance

QO = mean load effect

Vr = coefficient of variation of resistance
fod

R
Vo = coefficient of variation of load effect

Og
0

in which ¢ equals the standard deviation.
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Table 1.1 lLoad Factors and Load Combinations”

1.4 D

L2D+16L+05{(L,orSorR)

1.2 D+1.6(L.or S ar RY+(0.5L ar 0.8 W)
12 D+13W+05L+05(L orSorR)
1.2 D+1.5E+(05Lor028)

09 D-13WorlsE

where
D =dead load
L =live load
L. =rooaf live load
W = wind load
S =snow logad
E=ecarthquake load
R =nominal load due to initial rainwater or ice ex-
clusive of the ponding contribution
v

“The Inad factor on L in the third, Tourth and fifth load combinations
shown above shall cqual 1.0 for perages, sreas oceupied as places of public
assembly and all areas where the live load is greater than 100 pst.

The physical interpretation of the reliability index § is shown in Fig.
1.24. It is the multiplier of the standard deviation VV} + V5 between the
mean of the In (R/Q) distribution and the ordipate. Note that both the
resistance R and the load @ are treated as random parameters in LRFD,
and so In (R/Q) does not have a single value but follows a distribution.
The shaded area in the figure represcnts the probability in which
In (R/Q) <1, i.e., the probability that the resistarnice will be smaller than

Table 1.2 Resistance Factors

Member type and limit state ]
Tension member, limit state: yielding 0.90
Tension member, limit state: fracture 0.75
Pio-connected member, limit state: tension 0.75
Pin-connected membet, limit state: shear 0.75
Pin-connected member, Bimit state: bearing 1.00
Columns, all limit states 0.85
Beams, all limit states 0.90
High-strength bolts, limit state: tension 0.75
High-strength bolts, limit state: shear

A307 bolts 0.60

Others 0.65
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FIGURE 1,24 Reliability index

the load effect, indicating that a limit state has been exceeded. The larger
the value of 8, the smaller the area of the shaded area, and so it becomes
more improbable that a limit state may be exceeded. Thus, the
magnitude of 3 reflects the safety of the member.

In the development of the present LRFD Specification,' the following
target values for f§ were selected:

1. f=3.0 for members and 8 =4.5 for connectors under dead plus live
and/or snow loading;

2. =125 for members under dead plus live load acting in conjunction
with wind loading, and;

3. B=1.75 for members under dead plus live load acting in conjunction
with earthquake loading.

A higher value of 3 for connectors ensures that the connections designed
are stronger than their adjoining members. A lower value of § for
members under the action of a combination of dead, live, wind, or
earthquake loading reflects the improbability that these loadings will act
simultaneously.

From the above discussion, it can be seen that in allowable stress
design, the safety of the structural member is evaluated on the basis of
service load conditions, whereas in plastic or load and resistance factor
design, safety is evaluated on the basis of the ultimate or limit load
conditions. In addition to strength, the designer must also pay attention
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to stiffness of the structure. One important criterion related to stiffness is
that the structure or structural component must not deflect excessively
under service load conditions. Thus, regardless of the design method, one
should always investigate such serviceability requirements as deflection
and vibration at service load conditions.

1.8 SCOPE

In this book, the discussion of srability theory will be limited to
conservative systems under static or quasistatic loads. A conservative
systern 1s a system that is subjected only to censervative forces, that is, to
forces whose potential energy is dependent only on the final values of
deflection. In addition, most of the material presented in this book’s later
chapters will be based on what is called small displacement theory.
Hence, the critical load but not the postbuckling behavior of the member
or structure will be studied. Oniy the stability bebavior of structural
members and frames will be presented; the stability of plates and shells
will not be discussed.

For a discussion of the stability behavior of elastic systems under
nonconservative and dynamic forces, interested readers should refer to
books by Bolotin.®® For a discussion of the buckling behavior of plates
and shells, please refer to books by Timoshenko and Gere' and Brush
and Almroth.'

PROBLEMS

1.1 Find the critical load P, of the bar-spring systems shown in Fig. Pl.la—c
using the bifurcation approach. Assume that all the bars are rigid.

HEEEAT]
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1.2 Repeat Prob. 1.1, using the enerpy approach.

1.3 Investigate the stability behavior of the asymmetric spring-bar mode! shown

in Fig. P1.3.

k=2 i[g”

FIGURE P1.3

14 Investigate the stability behavior of the snap-through spring-bar model shown

in Fig. P.1.4.

FIGURE P1.4

REFERENCES

1. Load and Resistance Factor Design Specifieation for Structural Steel Build-
ings, AISC, Chicapo, IL, November, 1986.

2. Fliigge, W. Handbook of Engineering Mechanics, McGraw-Hill, New York,

1962, Chapters 44 and 45,

3. Specification for the Design, Fabrication and Erection of Structural Steel for
Buildings, AISC, Chicaga, 1L, November 1978,

4. Ravindra, M. K., and Galambos, T. V. Load and Resistance Factor Design
for Steel. Journal of the Structoral Division. ASCE, Vol. 104, No. ST. 9,

September 1978, pp. 1337-1354.



44 General Principles

. Ellingwood, B., MacGregor, J. G., Galambos, T. V., and Comell, C. A.
Probability-Based Load Criteria Load Factors and Load Combinations.
Journal of the Structural Division. ASCE, Vol. 108, No. §T5, May 1982, pp.
978-997.

6. ANSI, Building Code Requirements for Minimum Design Loads in Buildings

and Other Structures, ANSI AS58.1-1982, American National Standards
Institute, New York.

. Ang, A. H.-8., and Cornell, C. A. Reliability Bases of Structural Safety and
Design. Journal of the Structural Division. ASCE, Vol. 100, No. ST9,
September 1974, pp. 1755-1769.

8. Bolotin, V. V. Nonconservative Problems of the Theory of Elastic Stability,

G. Herrmann Ed., Macmillan, New York, 1963 (translated from Russian).

9. Bolotin, V. V., The Dynamic Stahility of Elastic Systems, Holden-Day, San

Francisco, 1964,

10. Timoshenko, §. P., and Gere, J. M. Theory of Elastic Stability, 2nd Edition,

11.

McGraw-Hill, New York, 1961.

Brush, D. O., and Almroth, B. O, Buckling of Bars, Plates and Shells,
McGraw-Hill, New York, 1975.

(General References

Simitses, G. J. An Introduction to the Elastic Stability of Structures, Prentice-

Hall, NJ, 1976.

Thompson, JM.T., and Hunt, G.W. A General Theory of Elastic Stability. John

Zi

Wiley & Sons, London, U.K., 1973.

egler, H. Principles of Structural Stability. Blaisdell Publishing Co., Waltham,
MA, 1968.



Chapter 2

COLUMNS

2.1 INTRODUCTION

In the preceding chapter, we investigated the critical conditions of several
simple bar-spring models. Since the bars were assumed to be rigid, they
did not deform as the system reached its critical state. As a result, the
equations of equilibrium were algebraic rather than differential in form.
In this and subsequent chapters, we shall study the buckling behavior of
deformable systems. For such systems, internal forces will develop as the
system deforms under the action of the applied external forces. Since
internal forces are usually expressed as a function of the derivatives of
the generalized coordinates, it follows that the resnlting equilibrium
equations that relate the external and internal forces will be differential in
form. Therefore, to proceed with the calculation, a knowledge of
differential calculus is indispensable.

We shall begin our discussion of a deformable system by studying the
buckling behavior of columns. In particular, we will use the bifurcation
approach to stability analysis in this chapter. The energy approach for the
stability analysis of elastic columns will be deferred until Chapter 6.
Shown in Fig. 2.1a is a perfectly straight elastic column loaded concentri-
cally by an axial force P. If P is small, the column will remain in a
straight position and undergoes only axial deformation. The column at
this state is said to be in srable equilibriin since any lateral displacement
produced by a slight disturbing lateral force will disappear when the
lateral force is removed. As P is increased, a2 condition is reached in
which equilibrium in a straight position of the column ceases to be stable.
Under this condition, a very small lateral force will produce a very large
lateral deflection that does not disappear when the lateral force is

45
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FIGURE 2.1 Euler load

removed. The axial load that demarcates the stable and wunstable
equilibritnn of the straight column is referred to as the critical loed (P.,)
ot Euler load (P,) (Fig. 2.1b). At the critical load, there also exists
another equilibrium position in a slightly deflected configuration. This
defiected position is favored when the straight column is disturbed by a
small lateral force, and the column will not return to its straight position
when the disturbing lateral force is removed. This slightly displaced
configuration is a stable equilibrium position. The transition from the
(unstable) straight configuration to the (stable) deflected configuration
corresponds to a state of neutral equilibrium of the column. In the
following section, we shall evaluate the critical load of this perfectly
straight column by reference to this neutral equilibrium position. This
technique for determining the critical load of a column is known as the
method of neutral equilibrium.

The critical load also marks the point of bifurcation of equilibrium of
the perfectly straight elastic column. It is at this point when the
theoretical load-deflection curve of the column bifurcates into stable and
unstable equilibrium branches that correspond to the deflected and
straight configurations of the column, respectively [Fig. 2.2, curve (i)].

The bifurcation point exists only for a perfectly straight column. In
reality, columns are rarely perfectly straight. Geometrical imperfection
and/or load eccentricity, which are unavoidably present in an actual
column, will cause the column to deflect laterally at the onset of loading.
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8

FIGURE 2.2 Load-deflection curves of (i) a perfectly straight column, (iia) a
column with small initial craokedness, (iib) a2 column with large initial crooked-
ness, (iii) a column with eccentrically applied load

Consequently, the load-deflection curve of an imperfect column is a
smooth curve. Curves (iia), (iib), and (iii) of Fig. 2.2 show schematically
the load-deflection behavior of a column with small geometric imperfec-
tion, large geometric imperfection, and load eccentricity, respectively.
Initially crooked and eccentrically loaded columns will be discussed in
subsequent sections of this chapter,

It should be mentioned that the behavior of a long column is quite
different from that of a short column. For a fong or slender column,
buckling may occur when all fibers of the cross section are still elastic and
so the Euler Ioad (P.) will govern the limit state of a slender column. For
a short or stocky column, yielding of fibers over the entire cross section
usually occurs when the yield stress of the material is reached before
buckling can occur, and so, for a stocky column, the yield load P, will
govern the limit state of the column. For a medium length column, some
of the fibers of the cross section may yield under the action of the applied
force while some fibers still remain elastic. For this case, the limit load is
denoted by F,, the ultimate strength of the column. For a perfectly
straight column, P, can be represented by the tangent modufus load (F,)
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or the reduced modulus load (F,). These loads can be obtained by making
certain assumptions regarding the strain and stress distributions in the
cross section of the column. The effect of this inelasticity can be taken
into account by modifying the elastic modulus according to the two
inelastic column theories: the fangent modulus and the reduced modulus
theories for a perfectly straight column. These two inelastic column
theories will be discussed in Section 2.7.

If the column is not perfectly straight, or if bending exists at the onset
of loading, the tangent or reduced modulus theory is not applicable
anymore. For such members, the ultimate load P, must be determined
numerically. Two commonly used numerical procedures to determine 7,
will be discussed in Sections 6.7 and 6.8 of Chapter 6.

2.2 CLASSICAL COLUMN THEQRY

A column is defined here as a member that sustains only axial load. If
lateral loads are present in addition to the axial load, the member is
referred to as a beam-column and will be treated separately in Chapter 3.
Although a column can be considered as a limiting case of a beam-
column when the lateral loads in a beam-column vanjsh, in this chapter
we will treat the columo problem independently,

r

2.2.1 Pinned-Ended Column

In deriving the basic differential equation of a pinned-ended column, the
following assumptions regarding the geometry, kinematics, and material
of the column are used:

1. The column is perfectly straight.

2. The axial load is applied along the centroidal axis of the coiumn.

3. Plane sections before deformation remain plane after deformation.

4, Deflection of the member is due only to bending (i.e., shear
deformation is ignored).

5. The material obeys Hooke's Law (i.e., the stress and strain are related
linearly).

6. The defiection of the member is small. As a result, the curvature can
be approximated by the second derivative of the lateral displacement.

With the above assumptions in mind, the governing differential equation
of the column is derived as follows:

In Fig. 2.3a a column, pinned at both ends with the upper end free to
moave vertically, is loaded by an axial force P applied along its centroidal
axis. To calculate the critical load of this column, one uses the method of
neutral equilibrium. At the critical load, the colunin can be in equilibrium
in both a straight and a slightly bent configuration. The critical load can
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FIGURE 2.3 Pinned-ended column

be obtained from the governing differential equation written for the
slightly bent configuration of the column using an e¢igenvalue analysis. In
an eigenvalue analysis, only the deflected shape and not the magnitude of
deflection of the buckled column can be determined. The critical load is
the eigenvalue and the deflected shape is the eigenvector of the problem.
Figure 2.3b shows a free body diagram of a column segment of the
column shown in Fig. 2.3a. Equilibrium of this free body requires that

— Minl 4+ Py = (221)

where M, is the internal resisting moment and y is the lateral
displacement of the cut section.

The internal moment M, induced by the bending curvature @ of the
cross section is given by

M, = EI® (2.2.2)

where E is Young’s modulus of the materiai and [ is the moment of
inertia of the cross section. The value EI here can be considered as the
slope of the relation between moment M, and curvature ¢ =1/R (Fig.
2.4). This linear moment-curvature relation can be derived directly from
the kinematic and material assumptions 3, 4, and 5 given above in the
following manner:

In Fig. 2.5, an infinitesimal segment of a column of length dx is shown
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FIGURE 2.4 Linear moment-curvature
relationship &P

with its undeformed and deformed positions. From similar triangles, we
can write the kinematic relation as

e . dx dx
ul =-— A
" R (2.2.3)
or
4
Ex=E=y1(D (2.2.4)
where

£, = axial strain

R =radius of curvature

From Hooke’s Law, the axial stress o, is related to the axial strain &,
by the linear relation.

o, = E&, (2.2.5)

From statics, the internal moment M, can be obtained by the

FIGURE 2.5 Kincmalics of a column segment
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integration of the moment induced by the stress o, over the cross section.
M =f no, dA (2.2.6)

A

Substitution of the kinematic relation {2.2.4) and the stress—strain
relation (2.2.5}) into the equilibrivm equation (2.2.6) gives

E
M, == J yida (2.2.7)
R Ja

By recognizing that [, y}dA is the moment of inertia I of the cross
section and 1/R is the curvature ®, Eq. (2.2.7) can easily be reduced to
Eq. (2.2.2).

If a small deflection is assumed, the curvature ¢ can be approximated
by the second derivative of the lateral displacement

dz
® = —Efg’= —y (2.2.8)
in which a prime indicates the derivative of y with respect to x. The
negative sign in Eq. (2.2.8) indicates that the curvature @ or the rate of
change of the slope dy/dx of the deflected shape as sketched in Fig. 2.3b
decreases with increasing x.

Using this approximation for curvature, the internal moment of Ey.

(2.2.2) can be related to lateral displacement y by

M= —Ely" (2.2.9)
Substitution of this expression for M, into Eq. (2.2.1) gives
Ely"+ Py=10 (2.2.10)
Introducing the notation P
k= £l (2.2.11)
Equation (2.2.10) can be written in the simple form
Y+ k=0 (2.2.12)

Equation (2.2.12) is a second-order linear differential equation with
constant coefficients. The general solution is

y = A sinkx + B cos kx (2.2.13)

Note that there are three unknowns, k£, A4, and B, in the above
equation, but we have only two independent boundary conditions.

y(0)=0 (2.2.14)
y(L)=0 (2.2.15)
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Therefore, we can only determine two unknowns. Substituting the first
boundary condition (2.2.14) into Eq. (2.2.13), we have

B=0 (2.2.16)
Using the second boundary condition (2.2.15), we have
AsinkL =0 (2.2.17)
Equation (2.2.17) is satisfied if
A=0 (2.2.18)
and/or
sin kL =0 (2.2.19)

Equation (2.2.18) is a trivial solution that states that the straight
configuration of the column is an equilibrium position. To obtain a
nontrivial solution that describes the equilibrium position of the column
in a slightly bent configuration, we must satisfy Eq. (2.2.19) with

kL=nz, n=12,... (2.2.20)
or
na
k=— 2.
T {2.2.21)
from which we can solve for P from Eq. (2.2.11)
2 ZEI
p=t Jer (2.2.22)

The value of P that corresponds to the smallest value of n (i.e., n=1)
is the critical load (P..) of the column. This load is also referred to as the
Euler load (F,), as Euler is the pioneer of this column-buckling problem.’

TiE]
LZ
It will be seen in later sections and chapters that the Euler load

constitutes an important reference load in the buckling and stability
analysis of members and frames.

The deflected shape of the column at buckling can be found by
substituting the constants B and & in Egs. (2.2.16) and (2.2.21) with n =1
into the deflection function (2.2.13). This gives

P.=P,= (2.2.23)

y=Asin %Jf (2.2.24)

Note that the constant A is still indeterminate. Thus, only the deflected
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shape and not the amplitude of the deflection can be determined. This is
because we approximate the curvature @ to the lateral displacement y of
the column by the linear relation @ = —y” using the small displacement
assumption. This approximation leads to the finear differential equation
[Eq. (2.2.12)]. If the small displacement assumption is obliterated, the
resulting differential equation will be nonlinear. The use of formal
mathematics for the solution to this nonlinear equation will result in not
only the deflected shape but also the amplitude of the deflected column.
The discussion of the large displacement behavior of an axially located
column will be given in the later part of this section.

2.2.2 Eccentrically Loaded Column

Figure 2.6a shows the loading condition and the deflected shape of an
eccentrically loaded column. The axial force P is loaded eccentrically at a
distance e from the centroidal axis of the column.

Equilibrium of the free body of a column segment shown in Fig. 2.6b

requires that —My+ Ple+y)=0 (2.2.25)

Substituting the internal moment from Eq. (2.2.9) into the above
equation gives

Ely"+ Ple+y)=0 (2.2.26)

FIGURE 2.6 Eccentrically loaded column
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using k* = P/EI, we obtain
y' + Ky =—k% (2.2.27)

Equation (2.2.27) is the governing differential equation of an eccentri-
cally loaded column. The general solution to this equation is

Y=Y+, (2.2.28)
where

y.=complementary solution to the corresponding homogensous
differential equation (i.e., ¥" + &%y =0)
¥, = particular solution satisfying Eq. (2.2.27)

The homogeneous solution is given by
Y. =Asinky + B cos kx (2.2.29)

The particular solution y, can be obtained by either the method of
undetermined coefficient or the method of variation of parameters. For
this simple case, it can easily be shown that

v, = —e (2.2.30)
Thus, the general solution is
y=Asinkx+ Bcoskx —e (2.2.31)

The constants A and B can be determined by the two boundary
conditions

y(0)=0 (2.2.32)
y(Ly=0 (2.2.33)
The first boundary condition leads to
B=¢ (2.2.34)
and the second boundary condition together with 8 = ¢ leads to
(.

Substituting these constants into the defiection equation (2.2.31), we
obtain the deflected shape of the eccentrically loaded column as

1-coskL
yo (o

in & o — 2.2
g sin kx + cos kx l)e (2.2.36)

The corresponding moment is given by M = —Ely" or
cos kL —1

M= —E[k? (—.
¢ sin kL

sin kx — cos kx) (2.2.37)
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The maximum deflection and moment occur at midheight of the
column. Therefore, by setting x = L/2, y,.. and M_,, are given respec-
tively as

1—coskL . kL kL
=y (L1 = (S BT e 1) @23)
1—coskl . kL kL
= = Eli*e{ —————sin—+cos — | (2.2,
My =M(L/2)=Elk e( oL S teos 2) (2.2.39)

Equations (2.2.38) and (2.2.39) can be simplified by using the
trigonometric identities

coskL =1—2sin’ Z—L (2.2.40)
sin kL = Zsin k?L cOos % (2.2.41)
and the resulting deflechion and moment at the midheight are
Yorax = (sec %L - 1)e (2.2.42)
M, = EIk%e sec % (2.2.43)

The maximum deflection {2.2.42) is measured from the original
undeformed centroidal axis of the column. The total maximum deflection
measured from the line of application of P is therefore

kL
Oax = Ymux + € = e(sec ?) (2.2.44)
Defining
kL T [P
Ap= sec - = sec (.Er \/f:’.:) (2.2.45)
as the amplification fuctor, Eq. (2.2.44) can be written as
Opmax = Ape (2.2.46)

and similarly, we can write
M, = Ax(ElK) (2.2.47)
since k*= P/EI, we have
Moo= A(Pe) (2.2.48)

Since ¢ and Pe are, respectively, the end eccentricity and end
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FIGURE 2.7 Amplification factors

moment of the eccentrically loaded column, Eqgs. (2.2.46) and (2.2.48)
indicate that the maximum displacement and maximum moment in the
column can be obtained by simply muitiplying the end eccentricity and
end moment by the amplification factor Ag [Eq. (2.2.45)]. Note that this
amplification factor depends on the axial force P. A plot of Ar as a
function of P/F, is shown in Fig. 2.7.

The normalized midheight deflection &,,,/L plotted as a function of
P/P. [Eq. (2.2.44)] for two end eccentricity ratios e/L = 0.001 and D.005
is shown in Fig. 2.8, For an eccentrically loaded column, deflection
begins as soon as the load is applied. The larger the end eccentricity, the
more the column will deflect at the same load level. Deflection is
relatively small at the commencement of loading, but increases progres-
sively and rapidly as the load increases. At or near the Euler load,
deflcction increases drastically and the load-deflection curves approach
asymptotically to the Euler load, P,. Thus, the maximum load that a
perfectly elastic eccentrically loaded celumn can carry is the Euler lpad.



2.2 Classical Column Theory 57

1,00

0.751

0.50+

0.25-

0 0.01 0.02 0.03 0.04 0.05 0.06

3 Max
L

FIGURE 2.8 Load-deflection behavior of eccentrically loaded columns

In reality, however, because of material yielding, the Euler load is
seldom reached and the maximum-load-carrying capacity of an eccentri-
cally loaded column will fall far below the Euler load.

2.2.3 Secant Formula

The maximum stress in an eccentrically loaded elastic column is the sum
of the axial stress and the maximum bending stress

P\ Mo
A {

where ¢ is the distance from the neutral axis to extreme fiber of the cross
section.
Substitution of M., from Eq. (2.2.48) into Eq. (2.2.49) gives

(Pe sec g VP/P,:)C
!

(2.2.49)

Tmax =

P
max=_+ 2.2.30
Tmsx =7 ( )

Since
I=Ar {2.2.51)

where r is the radius of gyration of the cross section, we can write Eq.
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(2.2.50) as

P ec a [P
s = [ 1+ 5065 7 (2252

[

This secant formula enables us to calculate in a direct manner the
maximum stress in an eccentrically loaded column. It will be used in what
follows to develop a column strength equation for the design of axially
loaded columns with imperfections.

If the first yield of the material is used as the criterion for failure, ie.,
if the limit state of the column is defined as the state at which the
maximum fiber stress just reaches the yield stress gy, the corresponding
critical load (P,) can be calculated from Eq. (2.2.52) by setting ., = ;.

c,,:% [1 +-i—§secg %—’] (2.2.53)

In actual design implementation, the secant formula is developed in
conjunction with reference to experimental data. The eccentricity factor
ec/r* is treated as an imperfection factor for an axially loaded column and
is determined by calibration so that the formula will best fit the given
experimental data.

2.2.4 Linear vs. Nonlinear Theory

In the preceding sections, the assumption of small displacement is used.
As a result, the curvature ¢ is approximated by the secend derivative of
the lateral displacement with respect to x, i.e.,

D =—y" (same as 2.2.8)

If the small displacement assumption is obliterated, a more exact
expression for the curvature must be used.

1

o= ¥
[+

in which the second-order term (y¥')? in the denominator can not be
neglected in the curvature-displacement relation. As a result, the
governing differential equation (2.2.10) derived previously for a pinned-
pinned column on the basis of small displacement assumption must be
modified to include this term (Fig. 2.9a). For the column segment shown
in Fig. 2.9b, the equilibrium equation is

(2.2.54)

—EI®+Py=0 (2.2.55)

Upeon substitution of the exact curvature expression (2.2.54) into the
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FIGURE 2.9 Large deflection analysis of a pinned-ended column

equilibrium equation (2.2.55), we have

E[yﬂ _
W+P}) =0 (2256)

This is a nonlinear differential equatica. To simplify the equation, we
express the curvature @ in terms of the rate of change in slope along the
deflected coordinate s of the member (Fig. 2.9a) by

dg
b= -—— 2.2.57
ds ( )
and, hence, the governing differential equation (2.5.55) becomes
da
EIE+Py =0 (2.2.58)

Taking derivatives with respect to s and realizing that

d
d—i’ = sin 0 (2.2.59)
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we have

2

Ef (cjsf +Psin@=0 (2.2.60)
Equation (2.2.60) can be solved by using elliptical integrals. Details of
these calculations are given in reference 2. In the following we shall
discuss the result of these calculations.
The expression for the midheight deflection of this column as a
function of P/P, is given as (see reference 2)

R

25—
= (2.2.61)

ra

o
=
a7

where o is the end slope of the column (Fig. 2.9a).

Figure 2,10 shows a plot of Eq. (2.2.61). For P/P, <1, the straight
configuration is the stable equilibrium position of the column. When
P/P,=1, bifurcation of equilibrium takes place. The original straight
configuration of the column will become unstable, in Fig. 2.10, this
unstable cquilibrium is represented by the line AB. A bent configuration

FIGURE 2.10 Large displacement load-deflection behavior of a pinned-ended
column

P/Pe

34
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will be favored; in Fig. 2.10, this stable equilibrium position is repre-
sented by curve AC. The defiection modes at various stages of loading on
the curve are represented by the inset diagrams. Both the end slope a
and the midheight deflection & increase rapidly as P/F, rises slightly
above unity. The midheight displacement is the greatest when P/P, is
about 1.7. After that, further increase on load will result in a decrease in
midheight deflection due to the fact that the column has now turned
inside out, and the applied force P will now act as a tensile rather than a
compressive force to close the loop.

Some observations and conclusions can be made from the present large
displacement analysis:

1. Both the linear and nonlinear theories give the same prediction of the
critical load (P..) = P..

2. When P/P.>1, a slight increase in P will result in a large increase in
displacement.

3. The postbuckling behavior of the column is stable because the buckled
column can carry additional axial load beyond the Euler load (7.).

4. Unlike the linear theory in which only the defiected shape, not the
amplitude of deflection, can be determined, the nonlinear theory gives
both the shape and amplitude of the buckled column.

5. The increase in load above the Eunler load can only be achieved at a
very large lateral deflection. At such a large deflection, inelastic
behavior of material must be considered in the analysis. In the plastic
or nonlinear range, the second-order differential equation becomes
highly nonlinear and is often intractable. Recourse must then be had
to numerical methods to obtain solutions. This is beyond the scope of
this book. (Interested readers are referred to the two volume,
comprehensive book, Theory of Beam-Columns, by Chen and Atsuta
[1976, 1977].)

The consideration of material nonlinearity and yielding in the behavior
of columns under the small displacement assumption will be given in
Sections 2.7 to 2.9 of this chapter.

2.3 END-RESTRAINED COLUMNS

So far, we have considered the behavior of columns whose ends are
pinned. In this section, we investigate the behavior of columns with other
end conditions, and then compare them to the pinned-ended case in
order to introduce the concept of effective length. The effective length of
an end-restrained column is defined as the length of an equivalent
pinned-ended column that will give the same critical load as the
end-restrained column. Physically, the effective length can be visualized
as the distance between the two inflection points (real or imaginary) of
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the buckled shape of the end-restrained member. This will be illustrated
in the following examples.

2.3.1 Both Ends Fixed

Figure 2.11a shows a column built in at both ends. The forces acting on
the column as it buckles are also shown in the figure. From Fig. 2.11b, it
can be seen that equilibrium requires that

M+ Py+Vx—M,=0 (2.3.1)
Since the internal resisting moment is
M, = —Ely" (2.3.2)

The differential equation for equilibrium of this column can be written

as
V M
yrkly= ——x 4+ =2 (2.3.3)

where k= P/EL

The generai solution consists of a complementary solution satisfying the
homogeneous equation and a perticular solution satisfying the entire
equation. The complementary solution is given by Eq. (2.2.13); and the
particular solution can be obtained by inspection as —Vx/P + M,/P.
Thus, the general solution is

y=Asinkx+ Bcoskx — Vx/P+ M,/P (2.3.4)
The boundary conditions are

y@=0, y'@©=0 (2.3.5)
y(L)=0, y(L)y="0 (2.3.6)

Using the conditions at x = 0, we have
B=—-M,/P, A=V/Pk (2.3.7)

Substitution of Eq. (2.3.7) into Eq. (2.3.4) gives

y=P—1;csinkx~—A;—Acoskx—%+% (2.3.8)

Using y(L) =0, we have

VvV . Ma VL M,
- _TA e liar Y 2
Pkska p COS kL P + P 0 (2.3.9)
Using y'(L) =0, we have
v k
—coskL+£4A—sinkL—K=O (2.3.10)

P P P
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From Egs. (2.3.9) and (2.3.10), for a nontrivial solution of V and M,,
we must have

kLsinkL +2coskL—2=0 (2.3.11)

By using the trigonometrical identity sin kL = 2sin (kL/2) cos (kL/2)
and cos kL =1 — 2sin® (kL/2), we can write Eq. (2.3.11) as

. kL (kL kL kL)

sin— | —cos——sin— | =10 (2.3.12)

2\2 2 2

Equation (2.3.12) can be satisfied if either the first term sin (kL/2) or
the terms in the parenthesis vanish.

If the first term vanishes, the solution is k.= 2nx where, n =1, 2,

3, ..., from which the critical load is obtained by settingn =1, i.e.,
P =%;El (2.3.13)
If the terms in the parenthesis vanish, the lowest value that satisfies the
equation k—ZI: cos k—ZL— — sin % =0 or tan %Ii: %— is kL =8.987 from which
Py= ~—80'126E1 (2.3.14)

The values of Eqgs. (2.3.13) and (2.3.14) correspond to the critical loads
of the symmetric (Fig. 2.11c) and antisymmetric (Fig. 2.11d) buckling
modes of the column, respectively. Sincc the critical load of the
symmetric buckling mode is less than that of the antisymmetric buckling
mode. The column will buckle in the symmetric mode. Unless the
midheight of the column is braced against lateral movement, Eq. (2.3.14)
will have little significance to us. The deflected shape of the symmetric
buckling mode can be obtained by substituting V =0 (because of
symmetry) and & = 2a/L into Eq. (2.3.8):

M, ( 2::.\:)
=-—|1—cos— .3.15
Y=7p cos — (2.3.15)

If we define KL as the effective length of this fixed-fixed column, the
equivalent pinned-pinned column with length KL (Fig. 2.11c) that will
carry the same critical load as the fixed-fixed column with length L can be

obtained by solving the following equation
a’El  4m*El
PPy e 2.3.16
(KL)Z L.. ( )

hich gi
which gives KL=1p 2.3.17)
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In other words, the length of the equivalent pinned-pinned calumn is
half that of the fixed-fixed column. Equivalently, the inflection points of
the fixed-fixed column are at a distance of L/2 apart (Fig. 2.11c). The
factor K is called the effective length factor of the fixed-fixed column. To
verify that the inflection points are indeed as shown in Fig. 2.11c, we first
write the moment expression along the length of the column and set it
equal to zero to calculate the distances x that give the locations of the
inflection points. By differentiating Eq. (2.3.15) twice, we can write the
moment expression as

. M, 4n*  2mx
M=— Iy =EI?-L_ZCOS_L_=0 (2318)
from which
2mx
0
oS
ar
L
x=%, n=1,3,5,... (2.3.19)

Using n =1 and 3, give x = L/4 and 3L/4. Heace, inflection points are
located at x =Lf4 and 3L/4 and so the distance between them is
3L/4— L/4=L/2, as shown in Fig. 2.11c.

In general, for a centrally loaded, and end-restrained column, the
effective length factor K can be evaluated directly by the following

equation
P
K=/ 2.3.20
\/Pcr (2.3.20)

P, =critical load of the end-restrained column
£, = Euler load of the pinned-pinned column having the same length as
the end-restrained column

where

Equation (2.3.20) can easily be derived from the definition of effective
length factor similar to that of Eq. (2.3.16).

2.3.2 One End Fixed and One End Free

Figure 2.12a shows a column built in at one end and free at the other
end. The corresponding free-body diagram of a shart segment of the
column is shown in Fig. 2.12b. The equilibrium equation for the free
body is '

My —PA+Py=0 (2.3.21)
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where A is the lateral deflection at the free end of the column. The
internal moment is

M, = Ely" (2.3.22)

The internal moment is related to the second derivative of the defiection
d*y[dx? positively because the curvature @ (or the rate of change of the
slope dy'/dx of the deflected curve as sketched in Fig. 2.12b, that
corresponds to the positive moment M,,,) increases with increasing x.

Y +ky =kA (2.3.23)
where k= P/E[.
The general solution is
y=Asinkx+ Bcoskr + A (2.3.24)
Using the boundary conditions
y(@)=0 (2.3.25)
y'(0)=0 (2.3.26)
we obtain
B=-4A (2.3.27)

A=0 (2.3.28)
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which, upon substitution into Eq. (2.3.24), gives

¥y =A(l —cos kx) (2.3.29)
Using the condition
y(L)=A (2.3.30)
in Eq. (2.3.29) will give
coskL =0 (2.3.31)
from which
kL=’—2’:r, n=13,... (2.3.32)

The critical load is the load corresponding to n =1 or

7El
Po=—F 2.3.3
4L* ( 3)
The deflected shape corresponding to P, is
X
y —_é_(l — cos Z_L_) (2.3.34)
The effective length factor is
P
K= F“—=2 (2.3.35)

The deflected shape of the equivalent pinned-pinned column with length
KL =2L is shown in Fig. 2.12(c).

2.3.3 One End Hinged and One End Fixed

Shown in Fig. 2.13a,b are the diagrams of a hinged-fixed column and the
free body of a short segment of the same column cut at a distance x from
the hinged support. Note that for moment equilibrium, a shear force of
Mg/L must be present at both ends of the column to balance the fixed
end moment Mg, which is induced in the built-in end as the column
buckles.

The equilibrium equation for the column segment shown in Fig. 2.13b
is

M
— M, + Py —fx:@ (2.3.36)

and since
M= ~Ely" (2.3.37)
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we can write the equilibrium equation (2.3.36) as

y'+ Ky —E%x=0 (2.3.38)
where k*= P/EL
The general solition is
y=Asinkx+Bcoskx+;14—£x (2.3.39)
The boundary conditions are
y(0)=0 (2.3.40)
y(L)=0 (2.3.41)
y{(L)=0 (2.3.42)
Using the first two boundary conditions, we obtain
B=0 {(2.3.43)
M

" PsinkL (2.3.44)
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and the deflection function (2.3.39) becomes
_ M (x sin k_t)
" P L sinkL

(2.3.45)

Using the third boundary condition in Eq. (2.3.45) gives
tan kL = kL (2.3.46)

from which AL can be solved by trial and error or by graphical means.
The lowest value of kL that satisfies Eq. (2.3.46) is

kL =4.4934 (2.3.47)
which gives
20.19E1
Pc,.=T (2.3.48)

The deflected shape of the column at buckling is

= MF [x i ( x)]
y=2Ir* 1.0245 sin | 4.4934 I (2.3.49)
and the effective length factor is
P 7w
K= P 20'19—0.7 (2.3.50)

The effective length KL =0.7L is shown in Fig. 2.13a.

Note that the term My/P in Eq. (2.3.49) represents the displacement
at x =0.2 L of the buckled member. This displacement is indeterminate
as for the other cases of end-restrained columns shown in this section
because of the use of the linear theory based on the small displacement
assumption.

2.3.4 One End Fixed and One End Guided

A column with one end fixed and the other end guided is shown in Fig.
2.14a. Note that the shear force is zero but the moment is not zero at the
guided end. Because of antisymmetry, the moment at the fixed end has
the same direction and magnitude as the moment at the guided end. As a
result, if we denote A the relative horizontal displacement of the two
ends of the column, it follows that the end moment from equilibrium
consideration will be PA/2.
The equilibrium equation for a segment of this column is (Fig. 2.14b)

PA
M ——-+ Py =0 (2.3.51)
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and upon substitution of the expression for the internal moment

M, = Ely"

we obtain the differential equilibrium equation as

" 2 PA
y +ky=;ﬁ—[

where k*= P/EL
The general solution is

A
y=Asinkx+Bcosk.x+E

Using the boundary conditions of
y(©0=0, y'(0)=0
respectively in the general solution (2.2.54) gives
B= -~ %, and A=0
Thus
y= % (1—coskx)

(2.3.52)

(2.3.53)

(2.3.54)

(2.3.55)

(2.3.56)

(2.3.57)
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Using the boundary condition

y(L)=A
gives
coskl.=—1 (2.3.58)
or
kL =nm, n=13... (2.3.59)
The critical load is given by letting n = 1, hence
mEl
Bo=— 2.3.60
= (2.3.60)
The deflected shape at P is
A
y=5 (l —cos%) (2.3.61)
and the effective length factor is
P,
K=+/-%=1 3.
3 (2.3.62)

The effective length KL of the equivalent pinned-pinned column is also
shown in Fig. 2.14a.

2.3.5 One End Hinged and One End Guided

If a column is hinged at one end and guided at the other, as shown in Fig.
2.15a, the equilibrium equation for a segment of this column (Fig. 2.13b)
can be written as

~Min+Fy=0 (2.3.63)
Since the internal moment is
M, =—-Ey" (2.3.64)
the differential equation governing the behavior of this column is
Ely"+Py=0 (2.3.65)
or
y' +ky=0 (2.3.66)
The general solution is .
vy =Asinkx + B cos kx (2.3.67)
The boundary conditions are
y{0)=0 (2.3.68)

y(L)y=0 (2.3.69)
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Using the first boundary condition, we have

B=40
Therefore, Eq. (2.3.67) becomes
y=Asinkx

Using the second boundary condition, we obtain
cos kL =0

from which
kL=%T, n=1,35, ...

The [owest value of n gives the critical load of the column
7El
P.=—
cr 4L2
The deflected shape at buckling is

ax

y =Asm£

Columns

(2.3.71)

(2.3.72)

(2.3.73)

(2.3.74)

(2.3.75)

(2.3.76)
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The effective length factor is

K=V[:=2 (2.3.77)

2.3.6 AISC Effective Length Factor and Column Curve

From the above discussion, it can be seen that for an isolated column,

regardless of its end conditions, the critical load can be expressed in the

general form as

_ mEI
(KL)?

P, (2.3.78)

where K is the effective length factor that is dependent on the boundary
conditions of the column. The theoretical values of K for various
boundary conditions have been derived in the preceding sections and are
summarized in Table 2.1. On the same table, the K-values recommended
by the AISC® are also shown. The recommended K-values involving
cases with fixed support are higher than their theoretical counterparts
because full join fixity is seldom realized in actual columns.

For design purpose, it is more convenient to express Eq. (2.3.78) in
graphical form. Realizing that [ = Ar? and defining

F,=Ao, (2.3.79)

KL o
Ae=— == 3.
<= \N2F (2.3.80)

as the slenderness parameter, Eq. (2.3.78) can be written as

Pl:f .
=2 (2.3.81)

y

Equation (2.3.81) is plotted in Fig. 2.16. Note that the curve
terminates at P =0.5F,, because Eq. (2.3.81) is only valid for perfectly
elastic_columns. For columns in the inelastic range (P >0.5F, or
Ac<\/§), a different column curve by AISC based on the tangent
modulus concept (to be discussed in Section 2.7) is used for practical
design. The demarcation point (£ =0.5P, or A.=V2) for elastic and
inelastic column behavior is based on experimental observations that the
maximum compressive residual stress of a hot-rolled—column section is
approximately 0.3o0,. The use of the number 0.5 rather than 0.3 is for
conservative purposes.

as the yield load and
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Table 2.1 Theoretical and Recommended K Values for Idealized Columns

[ ® | © (e) ®
Y 1
4?’“ o R

|
r
]

-

l o EALS
T A
’ !
1
Buckled shape of column ! rI
is shawn by dashed line 1

——————

Theoretical K value 0.5 ‘ 0.7 | 1.0 20 | 20
Recommended design “

value when ideal condi-

tions are approximated 0.85 0.80 12 1.0 2.10 2.0

Rotation fixed apd translation fixed

; Rotation free and translation fixcd

End condition code

Rotation fixed and translation free

j Rotation free and translation free

Adapted [rom reference 3,

2.3.7 Elastically Restrained Ends
The discussion so far has been focused on axially loaded columns with
rotational restraint at their ends that are either fully rigid (fixed-ended
case) or nonexistent (pinned-ended case). In actual structures, columns
usually do not exist alone but connected to other structural members that
will provide accountable rotational restraint to the columns. Conse-
quently, it is pertinent to investigate the behavior of columns with
elastically restrained ends.

Figure 2.17a shows an end-restrained column acted on by an axial force
P. Here, it is convenient to represent the effect of end restraint by a
spring with rotational stiffnesses Ry 5 and R, at the A and B ends of the
column, respectively. The rotational stiffness is defined as the moment

the spring can sustain for a unit rotation.
Referring to Fig. 2.17b, the equilibrium equation for the column

segment is expressed as

"_Mim+P_V + Vx —MA=0 (2_3,82)
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FIGURE 2.17 Column with elastically restrained ends
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The internal resisting moment is

M, = —EI" (2.3.83)
Therefore, the differential equation of equilibrinm can be written as
-V M
" 20, 1 Ha
Y+ £y EIx+EI (2.3.84)

The general solution of the differential equation is

vV M
y=A sinkx+Bcoskx—;x+?" (2.3.85)
Using the displacement and slope boundary conditions for the specific

problem and recognizing that
Ma=R A0, (2.3.86)
Mp = Rypfp (2.3.87)

the critical load of the end-restrained column can be obtained as shown in
the forthcoming example.
As an illustrative example, the buckling load of the column in the
simple frame shown in Fig. 2.18a will be determined.
At buckling, the forces that act on the column are shown in the
i free-body diagram of Fig. 2.18¢c. Because of symmetry there is no shear
' force acting on the column. Since the applied force P is generally much
greater than the shear forces V, and V that are induced as the beams
bend during column buckling, the differential equation of the column can
be written as (Fig. 2.18d)

M
"tk =2 2.3.
Y El (2.3.88)

where M, is the end moment induced at joint A as a result of buckling of
the column.

Note that Eq. (2.3.88) is a special form of Eq. (2.3.84), with the
column shear force V equal to zero. The general solution is

y=Asinkx+Bcoskx+£P& (2.3.89)
Using the boundary condition
y(@) =0 (2.3.90)
we obtain
M
B=-—2 (2.3.91)
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Using the symmetry condition,

A =0
dx =12
we have
M, kL
A= ——2tan—
p N5
Hence
M kL
y=TA (1 —tanTSinkx —coskx)
and

Mak
P

kL
(—tanT cos kx + sin kx)

Bl

(2.3.92)

(2.3.93)

(2.3.94)

(2.3.95)
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By referring to the free-body diagram of the lower beam (Fig. 2.18b)
and setting 6.=Mpsa=Mpc=0 in the following slope-deflection
equations

Ei
MA:I(4HA+ 28c)+ Mg, (2.3.96a)
' Ei
MC=I~(4BC+26A)+MFC (2.3.961))
we can obtain
4Ef
MA:TBA (2.3.973)
2
M. = f—j 8, =iM, (2.3.97h)
from which we have
M. L
=—"— 2.3.9
AT 4EI (2.3.98)

If rigid connection is assumed, the beam end rotation will be exactly
equal to the column-end rotation, i.e.,
dy

9A=_

- (2.3.99)

=0

Thus, by equating Eq. (2.3.98) to Eq. (2.3.93) evaluated at x =0, we
obtain

MAL _ Mak ( k_L)
QE- P tan 5 (2.3.100)

or
tan kZ—L+ %: 0 (2.3.101)

Equation (2.3.101) is the transcendental equation whose solution will
give the value of the buckling load.

Using graphical method or by trial and error, it can be shown that the
smallest value of kL satisfying Eq. (2.3.101) s

kL =4.586 (2.3.102)
or
21.03E]
e =3 (2.3.103)

Note that this critical load for the column restrained by the two beams
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falls between P. of a pinned-pinned column and that of a fixed-fixed
column. The effective length factor for this elastically end-restrained
column in the simple frame is

P T
K=+[-S=q/-——=0. 2.3.104
3 5103 0.685 (2.3.104)

2.4 FOURTH-ORDER DIFFERENTIAL EQUATION

In the previous section, the governing differential equation describing the
behavior of the column has been developed by consideration of equi-
librium for a column segment of finite size. The resulting equilibrium
equation is second order. Depending on the end conditions, this
second-order differential equation may or may not be homogeneous. By
enforcing proper geometric (or kinematic) boundary conditions, the
critical load can be obtained as the eigenvalue of the characteristic or
transcendental equation of the differential equation. In this section, a
fourth-order differential equation (2.4.6), which is applicable to all
columns with any boundary condition, will be developed.

Figure 2.19 shows the free-body diagram of an infinitesimal segment of

x FIGURE 2.19 Free-body diagram of
an infinitesimal segment of a column
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the column. By summing the moment about point b, we obtain

de+de+M—(M+%’dx)=o

or, upon simplification

_M_
Q="7-P2 (2.4.1)

Summing force horizontally, we can write
aQ ) _
o+ ( o+ 1 dx =10

or, upon simplification

dQ
— == 2.4.2
=0 (2.42)
Differentiating Eq. {2.4.1) with respect to x, we obtain
d 2 2
Q_dM_,dy (2.4.3)

de @ dr’
which, when compared with Eq. (2.4.2), gives

d*M d?

5 -Palz=0 (2.4.4)
, &y :
Since M = —FE] e Eq. (2.4.4) can be written as
4 d2
EI%+ Pﬁ: 0 (2.4.5)
or

yV kY =0 . {2.4.6)

Equation (2.4.6) is the general fourth-order differential equation that is
valid for all support conditions. The general solution to this equation is

y=Asinkx+Bcoskx+Cx+ D (2.4.7)

To determine the critical load, we need to specify four boundary
conditions: two at each end of the column. In most cases, mixed—i.e.,
both geometric and force—boundary conditions are needed to be
specified.

Tao show how to obtain critical loads using the fourth-order differential
equation, we will solve the cases of a pinned-pinned, a fixed-fixed, and a
fixed-free column.
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For a pinned-pinned column (Fig. 2.20), the four boundary conditions

are:
y0)y=0, M@O)=0 (2.4.8)
y(L)=0, M(L)=0 (2.4.9)
Since M = — EIy", the moment conditions can be written as
¥(0)y=0 (2.4.10)
y'(L)=0 (2.4.11)
Using the conditions y(0) = y”(0) = 0, we obtain
B=D=0 (2.4.12)
The deflection function (2.4.7) reduces to
y=Asinkx+ Cx (2.4.13)
Using the conditions y(L) =y"(L) =0, Eq. (2.4.13) gives
AsinkL+ CL=0 (2.4.14)
and
~Ak*sinkL =0 (2.4.15)
X FIGURE 2.20 Pinned-pinned column
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If A=C =0, the solution is trivial. Therefore, to obtain a nontrivial
solution, the determinant of the coefficient matrix of Eq. (2.4.16) must
vamsh, L.e.,

In matrix form

sin kL L
. =0 A,
\—k“ sinklL, 0 ] 2.417)
or
k2L sin kL =0 (2.4.18)
Since k?+ 0, we must have
sin kL =0 (2.4.19)

ocrkL=nmg, n=1123,....
The critical load can be obtained by setting n =1 to give

_m’El

Fer e (2.4.20)
Fixed-Fixed Column
The four boundary conditions for this case are (Fig. 2.21)
yO)=y'0)=0 (2.4.21)
y(L)=y'(L)=0 (2.4.22)
Using the first twe boundary conditions, we obtain
D=—-B, C=—-Ak (2.4.23)
The deflection function (2.4.7) becomes
y=A(sin kx —kx}+ B(cos kx — 1) (2.4.24)
Using the last two boundary conditions, we have
sinkL — kL coskL—17[A 0
— 7
[cos kL—-1 —sinkL J[B] [0] (24.25)
For a nontrivial solution, we must have
sin kL — kL cosklL—1
t = 2.4,
de coskL —1 —sinkL 0 (2.4.26)

or, after expanding
kLsinkL+2coskl—2=( (2.4.27)
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FIGURE 2.21 Symmetric buckiing
P mode of a fixed-fixed column

Note that Eq. (2.4.27) is identical to Eq. (2.3.11) and thus the critical
load for the symmetric buckling mode is P = 47x°EI/L* and that for the
antisymmetric buckling mode it is P.. = 80.766EI /L~

Fixed-Free Column

The boundary conditions for a fixed-free column are (Fig. 2.22).
At the fixed end

y)=y'(0)=0 (2.4.28)
and, at the free end, the moment M = Ely" is equal to zero
y'(L)=0 ‘ (2.4.29)

and the shear force V =—dM/dx = —EIy" is equal to the transverse
component of P acting at the free end of the column cross section Py’
(Fig. 2.22).

V=—Ely"=py’ (2.4.30)

It follows that the shear force condition at the free end has the form
y'+ k' =0 (2.4.31)

Using the boundary conditions at the fixed end, we have
B+D=0, Ak+C=0 (2.4.32)
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The boundary conditions at the free end gives
AsinkL + BcoskL =0, C=0
In matrix form, Eqgs. (2.4.32) and (2.4.33) can be written as

0 1 1]|]A] |0
k 0 0 B 0
sinklL cosklL © D Q

For a nontrivial solution, we must have

0 1 1
det k 0 0| =0
sinkl coskL O

or, after expanding
kcoskL=0

Since k£ #0, we must have cos kL =0 or

kL-—-%r n=1,35,...

The smallest root (n = 1) gives the critical load of the column

x2El

Pcr=';—1
4L-

Columns

(2.4.33)

(2.4.34)

(2.4.35)

(2.4.36)

(2.4.37)

{2.4.38)
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Table 2.2 Boundary Conditions for Various

End Conditions

End conditions

Boundary conditions

Pinned
Fixed
Guided
Free

y=0, y'=0

y=0, =0

ya=0] ym=0
y"= , ym+k1yr =0

For the three cases studied,

the solutions of the fourth-order

differential equation are seen to lead to the same critical loads as the
second-order equation. Note that the second-order equations for these
cases studied previously are different because of different boundary
conditions, but the fourth-order equation is the same for all cases. In
determining the critical load using the fourth-order equation, four
boundary conditions must be specified. The boundary conditions for
various support cases are summarized in Table 2.2.

—r

2.5 SPECIAL MEMBERS

The discussion so far has been restricted to columns for which the axial
force P and flexural rigidity EI are constant along the length of the
member. Furthermore, no intermediate support is present, so that
restraint is provided only at the ends of the column under investigation.
In this section, we shall extend the solution for evaluating critical loads of
prismatic isolated columns with constant axial force to columns with a
change in axial force, a change in flexural rigidity, or with intermediate

support (Fig. 2.23).

2.5.1 Two-Axial-Force Column

As an illustration, consider the cantilever column shown in Fig. 2.24a.
The column is subjected to two axial forces P: one applied at the free end
and the other at midheight. As a result, the axial force along the entire
length of the column is not a constant. The axial force is equal to 2P for
the lIower portion of the column from A to B (segment 1), but it is equal
to P for the upper portion of the column from B to C (segment 2). To
determine the critical load of this column, it is therefore necessary to
write two differential equations, one for each segment of the column for
which the axial force is a constant. For convenience, two sets of
coordinates are established: x, — y, for column segment 1 and x, — y, for

column segment 2.
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FIGURE 2.24 Cantilever column subjected to two axial forces
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With reference to Fig. 2.24b, the differential equation for segment 1 is

Elyy + 2Py, =M, (2.5.1)
or
M
T+ Ky =—2 2.5.2
Y1 841 El ( )
where
2P
B== 2.5.
Ej (2.5.3)
Ma=P(Ag+ Ac) (2.5.4)

in which Ag and Ac are the lateral deflections with respect to the x, — y,
axes for points B and C, respectively. The general solution of Eq. (2.5.2)
is

) M
yn=Asinkx+ Bcoskx+ EEA% (2.5.5)

With reference to Fig. 2.24c, the differential equation for segment 2 is

EIyS+ Py, = My, (2.5.6)
Qr
M

Yi+kdy, =27 (2.5.7)

where

ol s

75 (2.5.8)
Mn=P(Ac— Ap) (2.5.9)

The general solution of Eq. (2.5.7) is

y2=Csinkyx; + D cos kyx, + (2.5.10)

My
EI3

The four constants 4, B, C, and D in Eqs. (2.5.3) and (2.5.10) can be
evaluated using the following boundary and continuity conditions

n@=0_,, (2.5.11)
n@®=0 - (2.5.12)
5(5) =00 + (25.13)

yi(g) = yé(O? (2.5.14)
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The first two boundary conditions give

Ma
B~ -~ (2.5.15)
A=0 (2.5.16)
and the continuity conditions (2.5.13) and (2.5.14), give
M, L My M
2 3 T ERE T EIG 2347
_ Ma . kL
C_Elklkzsm 2 (2.5.18)

Substitution of these expressions into the deflection functions (2.5.5)
and {2.5.10}) gives

M
¥ =gz (1= cos kux) (2.5.19)
1

and

M., . kL,
= ——sink,x
¥z Iklkzsm 5 Sinkzts

: M,
0s ko + =5 (2.5.20)

__(_MA Jal  Me +_M_E_)C
EC S TENG ENG EIKG
Finally, using the conditions
L
yl(‘i') = AB (2.5.21)
L
)}2(5) =Ac—Ap (2.5.22)
and realizing that M, = P(Ag + A¢) and Mg = P(A-— Ag), we obtain
ki ku][An] [0}
= 2.5.2
i v (2:5.2%)
where _
kWL
ky =—1—cos 17 (2.5.24a)
kL
ki3 =1-cos éf (2.5.24b)
1 . kL, kL koL
ka —ﬁsm 5 SN + cos 2 {2.5.24c)

kgz=%sink—;‘-sin%—- COS% (2.5.24d)
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For a nontrivial solution, we must have

ki ki

det
by ka

=0 (2.5.25)

By trial and error, and by recognizing that k; = V2 k, we find that the
lowest value of k, satisfying Eq. (2.5.25) is

1.4378
ky= 2.5.26
== (2.5.26)
Using the definition of &, [Eq. (2.5.8)], we obtain
ET
B =2061 (2.5.27)

2.5.2 Continuous Member

In the preceding example, the second-order differential equation has
been used in the solution procedure. The fourth-order differential
equation is equally applicabie, of course. To illustrate this, consider the
two span continuous column shown in Fig. 2.25a. The column is
subjected to an axial force P. It is desired to determine the critical load of
this column. Here, as in the preceding example, the column is divided

FIGURE 2.25 Continugus member
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into two segments, 1 and 2, and a differential equation is written for each
segment. For convenience, two sets of coordinate axes are again
established: x; — y, for segment 1 and x; — y, for segment 2.

The fourth-order differential equation for segment 1 is

kY =0 (2.5.28)
where k2= P/EI and the general solution is
A o~
y1= A sin kex, + B gos ko, + Cxy D (2.5.29)

.jl“i A Loy, oo O oAy
Similarly, the fourth[érder differential equation for segment 2 is

y + k%y4=0 (2.3.30)
and the general solution is
ys=E sinkry + F cos ke, + Gr, +H (2.5.31)
By using the boundary conditions
n0@=0 yi(®)=0c (2.5.32)
(L) =0- (2.5.33)
¥(0)=0, yy0)=0 (2.5.34)
yAL) =0 (2.5.35)
and the continuity conditions T
nELY=-yiL) = - (2.5.36)
yiGL) = yi(L) (2.5.37)
it can be shown that
B=D=F=H=0( (2.5.38)

and

sindkl 3L 0 0
0 0 sinkl L
'~sin 3L (]f ‘sinkL 0

A
C

= 2.5.
‘ (2.5.39)
G

[ o= B e B e

The minus sign in Eq. (2.5.30) indicates that a positive slope at the
intemediate support with respect to the x, —y, axes corresponds to a
negative slope with respect to the x;—y, axes (Fig. 2.25b). For a
nontrivial solution, the determinant of the coefficient matrix of Eq.
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(2.5.39) must vanish

sinskl 2L 0 0
0 0 sinklL L

1

0

det =0 (2.5.40)

kcos2klL 1 kcoskL
—sin3kL 0 sinkL

or, after simplification, we obtain the characteristic equation as
5sin3kLsin kL —3kLsin 3kL. =0 (2.5.41)

By trial and error, the smallest value of & that satisfies the characteristic
equation is

=225 (2.5.42)
using k* = P/EI, we have

(2.5.43)

2.6 INITIALLY CROOKED COLUMNS

In reality, all columns are imperfect. There are two types of impetfec-
tions: peometrical imperfection and material imperfection. In this sec-
tion, we investigate the behavior of geometrical imperfect column. The
behavior of column with material imperfection will be discussed in the
next section.

2.6.1 Pinned-Ended Column

Figure 2.26a shows a peometrical imperfect column. To begin with, let us
assume that the initial out-of-straightness is in the form of a half sine
curve described by

Yo= 8o sm% (2.6.1)

where d, is the amplitude of the crookedness at midheight of the column.
If we consider equilibrium of a segment of column (Fig. 2.26b), the
equilibrium equation is

—M + P(y +y) =0 (2.6.2)
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(a) 14:)

FIGURE 2.26 Initially crooked column

noting that y is the deflection of the column from its original crooked
position.
The internal resisting moment is

My = —EIy" (2.6.3)

This internal bending moment results from a change in curvature p”
and not from the total curvature y” + y{, since it is tacitly assumed that
the column is stress-free in its initially crooked position before the
application of the load P.

Substituting the expression for the internal moment (2.6.3) into the
equilibrium equation (2.6.2), the differential equation that describes the
behavior of an initially crooked pinned-ended column takes the form

Ely"+ P(y +y) =0
or using Eq. (2.6.1), we have

JX

- (2.6.4)

V' + ky = —k*6, 5in

where k* = P/E[ and the complementary solution is
y.=Asinkx + B cos kx (2.6.5)
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The particular solution can be obtained by using the method of
undetermined coefficient. Since the right-hand side of the eguation
consists of a sine and/or cosine term, the particular solution is of the
form

yp=Csin%+Dcos% (2.6.6)

in which € and D are the undetermined coefficients.
To determine € and D, we substitute Eg. (2.6.6) into the differential
equation (2.6.4), and, after combining terms, we obtain

2 2
[C(k2 - %) + kzﬁﬂ] sin?+ [D(k2 —%ﬂ oS % =0 (2.6.7)

This equation must be satisfied for all values of x. Thus, the terms in both
square brackets must vanish. The vanishing of the first square brackets
leads to

-k, _ 8,PIP,
k*—m*/L* 1—-P/P,

(2.6.8)

in which F, is the Euler load. The vanishing of the second square brackets
gives either

D=0 (2.6.9)
ar
2
K =% (2.6.10)

If we use Eq. (2.6.10), we obtain P, = n*El/L?, which is the Euler load.
This is not the solution we are interested in here. Therefore, we must
have D =0. As a result, the general sclution is

y=Asinkx+Bcoskx+i§§%%sin% (2.6.11)
To determine the two constants A and B, we use the boundary conditions
y(@)=0 (2.6.12)
y(L)=0 (2.6.13)

Using the first boundary condition, we have
B=10 (2.6.14)

and the second boundary condition leads to
AsinkL=0 (2.6.15)




9« Columns

from which either

A=D (2.6.16)
or
sin kL=0 (2.6.17)

If we let sin kL =0, we égain limit the solution to P = P,. Therefore, we
must have 4 = 0. With A = B =0, Eqg. (2.6.11) becomes
P/P, 5 s
= — 2.6.18
Equation (2.6.18) expresses the deflection from the initial crooked
position of the column. To obtain the total deflection (i.e., deflection
from the x-axis), we need to add Eq. (2.6.1) to Eq. (2.6.18).

Yiow = Yo + ¥y
or
1 . TTX

Yrowt = ('1—-_ ] P,:)(S” sin (2.6.19)
Equation (2.6.19) states that the total deflection (induced as a result of
the applied compressive force) can be obtained simply by multiplying the
initial deflection by a factor 1/(1 — P/F,.). The term in parenthesis in Eq.
(2.6.19) is called the amplification factor (Ag)

1
A= —m— 6.2

F 1— P/Pc (2 0)

The moment in the column is

M = P(_V +yU) = P,vl[)[nl
or
1 X

={— in— 2.6.21
M (1—P/P¢)P‘5°S‘“L ( )

If we denote M as the first-order moment, or the moment evaluated by
considering equilibrium with respect to the initial geometry of the
geometrical imperfect column, then we can write Eq. (2.6.21) as

MzAFMI (2.6.22)

Equation {2.6.22) states that the moment evaluated based on the
deformed geometry of the column (second-order moment) can be
obtained from the moment evaluated based on the initial geometry of the
column (first-order moment) simply by multiplying the latter by the
amplification factor. The variation of this moment amplification (or
magnification) factor as a function of P/P, is shown in Fig. 2.7.

If the initial crookedness of the column is not a half sine wave but
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some generaj shape, it is advantageous to express this general shape in a
Fourier sine series
. ;X . 2mx
Yp=0sin—+ &sin——+ - -+ (2.6.23)
L L
If we proceed as before with each term of the series, and then sum the
results together, we have
X 2’5, 2xx

d; . .
= _ — s 6.2
Yiow =75 /P. s~ -+or o 1P, sin (2.6.24)

2.6.2 Perry—-Robertson Formula

For an eccentrically loaded column, it has been shown that a formula (the
Secant Formula) can be developed that relates the stress in the column to
its slenderness ratio. For an initially crooked column, a similar approach
can be taken to develop an equation called the Perry—Robertson
formule,*S which also relates the stress in the column to its slenderness
ratio.

The maximum stress in an initially crooked column can be expressed as
the sum of axial and bending stress,

Mpaxc
I

+ (2.6.25)

Tovax =

|y

where

A = craoss-section area
¢ = distancc from neutral axis to extreme fiber
[ = moment of inertia

The maximum moment for an initially crooked column occurs at
midheight and is given by setting x = L/2 in Eq. (2.6.21)

Myx=7T7"+ 6.2
max 1— P/P,: (2 6)

Substitution of the M,,,, into the expression for g,,,, and using [ = Ar®
gives

P 8gc 1 J
= 1+_— .6,
O [ Ea 1P, (2.6.27)

This is called the Perry—Robertson formula. Again, using the first
yielding of the material as the criterion of failure for the column, the
ultimate or critical load can be determined from Egq. (2.6.27) by setting
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Omax = Ty, i.€.,

PCI.'
O'y=I[1+

(505 1 ]
r2 ]_'Pcr/PE

(2.6.28)

The Secant and Perry-Robertson formulas are, strictly speaking, valid
only for very long or stender columns for which their slenderness ratios
L/r are large, so that the stress in the column will remain in the elastic
range at the buckling load. For shorter columns, material yielding is mare
important than geometrical imperfection. As a result, it is essential to
consider the material imperfection in describing the behavior of shorter
ar stocky columns. The behavior of inelastic columns will be discussed in
the next section.

2.7 INELASTIC COLUMNS

The discussion so far pertains to columns for which the material remains
fully elastic and obeys Hooke’s Law. This assumption is valid as long as
the column is slender enough so that buciling occurs only at a stress level
below the proportional limit of the stress-strain relationship of the
material. For shorter columns, buckling will occur at a stress level above
the proportional limit (Fig. 2.27). This type of buckling is referred te as
the inelastic buckling. For columns that buckle inelastically, some of the
fibers in the cross section have been yielded before buckling occurs. As a
result, only the fibers that remain elastic are effective in resisting the

FIGURE 2.27 Critical stress above proportional limit

STRESS

PROPORTIONAL LIMIT

STRAIN
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additional applied force. Since only a portion of the cross section is
effective in resisting the axial force at buckling, the elastic modulus E
must be replaced by an effective modulus E .y to describe the behavior of
an inelastic column. In this section, we will discuss the buckling behavior
of a perfectly straight column buckled in the inelastic range; in particular,
we will discuss the fangent modulus theory and the reduced modulus
theory proposed by Engesser’ and the inelastic column theory of
Shanley.®

2.7.1 Tangent Modulus Theory

The tangent modulus theory was proposed by Engesser’ in 1889 to
describe the buckling behavior of columns whose buckling stress is above
the proportional limit of the material. The following assumptions are
made in the tangent modulus theory:

1. The column is perfectly straight.

2. The ends of the column are pinned and the load is applied aleng the
centroidal axis of the column.

3. The bending deformation of the column is small.

4. Plane sections before bending remain plane after bending.

5. During bending, no strain reversal (i.e., unloading of fibers) occurs
across the cross section of the column.

For inelastic buckling, the stress in the fibers is above the proporticnal
limit of the material (Fig. 2.27). In what follows we shall show that the
tangent modulus E; governs the behavior of the fibers during buckling of
the column.

Figure 2.28a shows a pinned-pinned column buckling at the tangent
modulus load P. The distributions of strain and stress across the cross
section are shown in Fig. 2.28b. In the figure, o, and &, are, respectively,
the stress and strain at the tangent modulus load before buckling. When
the column buckles at the tangent modulus load, it is assumed that there
is an increase in the axial force AP together with the bending moment
AM. This increase in axial force AP combined with the incresing bending
moment AM is such that it will cause an overall increase in axial strain
across the section, so that no strain reversal will take place anywhere in
the cross section. As a result, the tangent modulus E, will goverp the
stress-strain behavior of all fibers of the cross section as shown in Fig.
2.28c.

The differential equation governing the behavior of this column can
now be derived as follows:

For a column segment of length x from the support, the equation of
equilibrium can be written as

~My + Py =0 2.7.1)
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FIGURE 2.28 Tangent modulus theory

where P is the applied centroidal axial force and y is the distance from
the line of action of the axial force to the centroidal axis of the cross
section as the column bends.

The internal moment at the section due to bending has the general
form

My, = j oz dA (2.7.2)
A
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where o is the longitudinal stress of a fiber in the cross section and z is
the distance from that fiber to the centroidal axis of the cross section.

From the stress diagram in Fig. 2.28b, it can easily be seen that o can
be expressed as

A
g=a,+Ao=aqg+ C;:““ (z+g) (2.7.3)
Substituting Eq. (2.7.3) into Eq. (2.7.2) gives
AOqux Iy
M = L [at 4 20 (z + 2/|]z dA (2.7.4)

or, expanding

AGrax
g f zdA  (21.5)
2 Ja

A mnax el
Ml'nt= atf ZdA +_G_J Z'dA +
A b Ja

Since the first moment of area about the centroidal axis is zero, i.e.,

fsz =0 (2.7.6)
A
and realizing that
[deA =1 2.7.7
A
is the moment of inertia [ of the cross section, we can write Eq. (2.7.5) as
AG o
M, = I=AM (2.7.8)

By substituting Ady..=FEAen,, in Eq. (2.7.8) and recognizing that
At/ is the curvature @ of the cross section (Fig. 2.28b), Eq. (2.7.8)
becomes

Mg = EJP (2.7.9)

Assuming a small deflection, the curvature @ can be approximated by
the second derivatives of the deflection or ® = —y". As a result, Eq.
(2.7.9) can be written in the usual form

M, = —Ely" (2.7.10)

Substiteting the internal moment (2.7.10) into the equilibrium equation
(2.7.1), we have

EIy"+ Py =0 (2.7.11)

Equation (2.7.11) is the governing differential equation for an inelastic
column developed on the basis of the tangent modulus theory.
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The only difference between Eq. (2.7.11) and Eq. (2.2.10), is that E in
Eq. (2.2.10) is replaced by E, in Eq. (2.7.11). As a result, by following
the same procedure as in Section 2.2, the critical load of this inelastic
column based on the tangent modulus theory is

n’El E

P==-=7F (2.7.12)

The load expressed in Eq. (2.7.12) is called the fangent modutus load.
We will show later that this load is the smallest load at which bifurcation
of equilibrium of a perfectly straight column can take place in the
inelastic range. The effective modulus in the tangent modulus theory is
therefore the tangent modulus, £,. The tangent modulus used in Eg.
(2.7.12) depends only on the material property (i.e., stress-strain
relationship of the material).

2.7.2 Double Modulus Theory

The double modulus theory, also referred to as the rediuced modulus
theory, was proposed by Engesser’ in 1895, based on the concept given
by Considere.’

The first four assumptions used for the development of tangent
modulus theory are also used in the reduced modulus theory. However,
the fifth assumption is different. In the reduced modulus theory, the axial
force is assumed to remain constant during buckling; consequently, the
bending deformation at buckling will cause strain reversal on the convex
side of the column. The strain on the concave side of the column, on the
other hand, continues to increase. As a result, the increments of stress
and strain induced as a result of the bending of the column at the
buckling load will be related by the elastic modulus on the convex side of
the column, but the increments of stress and strain on the concave side of
the column are related by the tangent modulus. Since two moduli, E and
E,, are necessary to describe the moment-curvature relationship of the
cross section, the name double modulus was used. Because the double
modulus is less than that of the elastic modulus that appcarcd in the Euler
buckling formula, the double-modulus load will be less than that of the
Euler buckling load. This will be demonstrated in what follows. Thus, the
double-modulus load is also called the reduced modulus load.

Figure 2.29a shows the buckled shape of a centrally loaded pinned-
ended inelastic column at the reduced modulus load, P. The correspond-
ing strain and stress distributions are shown in Fig. 2.29b. The relation-
ship between the increments of stress and strain as a result of bending
deformation is shown in Fig. 2.29c. The governing differential equation
describing the behavior of this column can be derived as follows.
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FIGURE 2.29 Double (reduced) modulus theory

For a column segment of length x from the support, the equation of
equilibrium can be written as

—My +Py=0 (2.7.13)

where P is the applied centroidal axial force and y is the distance from
the line of action of the axial force to the centroidal axis of the cross
section as the column bends.

The internal moment-curvature (M;, — @) relationship for the cross
section will be derived in the following. Because the axial force remains
constant as the column buckles at the reduced {or double) modulus load,
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the additional compressive force induced as a result of bending of the
column must be equal to the additional tensile force such that the net
increase in axial force AP is zero (Fig. 2.30), i.e.,

APCOmp\'essi\lc = Aptcnsilc (2714)

This pair of forces AP ompressive aNd AP . constitutes a couple and
the internal resisting moment of the column is equal to this couple

!"’!im = APcnmpr:ssiuc c= APlensilc c (2715)
where ¢ is the distance betwezen this pair of forces.

Since the moment arm or the locations at which AP npremive and
AP . act depends on the geometry of the cross section, we must
specify the geometry of the cross section before we can proceed to
evaluate the internal resisting moment.

Rectangular Cross Section

Considering a rectangular cross section with dimeasions & and /4 as shown
in Fig. 2.31, we can write

APcnruprcssive = %bCI(AUImm{) (2-7'163)
APmnsile = Zbcz(Aazmnx) (2716b)

Equating these two forces,
1be,AC mux = 20CAOamax (2.7.17)

we obtain
ﬁ _ AUZm.’lx

(2.7.18)
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Since
Aglm:u: = EtAEImnx = EQC](D (27 19)
Ag2max = EA EZmnx = EC2¢) (27 20)

where & is the curvature, we can write Eq. (2.7.18) as

Cy Z_E
(Cz) -z (2.7.21)

Realizing that
3] + Ca= h (2.7-22)
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we can solve for ¢, and ¢; from Eqs. (2.7.21) and (2.7.22)

hVE
= 1.
“CVE+VE @7.23)
h V E(
== 7.
2= EE VE, (2.7.24)
Using Eqgs. (2.7.23) and (2.7.19), Eq. (2.7.16a) can be written as
EE
e = 3bh? " D 7,25
APCDmpmsswc 2bh (\/E+ -\/E)z (2 3)
Similarly, using Eq. (2.7.24) and (2.7.20), Eq. (2.7.16b) can be written as
EE,
AP, e = 30R? e L
tensil 1b (.\/E + ,r—*Eljz ¢ (2 7 26)

Since the distance, ¢, between this pair of forces AP ompressive 200 AP peile
for a rectangular section is

c=3h (2.7.27)
the internal resistance moment, Eq. (2.7.15), has the value
EE
My = 3b#° L 2.7.
int — 3 ( E + EL)Z ( 28)
or
M, = EI® (2.7.29)
where
_ 4LE
E'-_T———( 5+ VEY (2.7.30)
is the reduced modulus for the rectangular cross section, and
I =100 (2.7.31)

is the moment of inertia of the rectangular cross section.
Again, for a small deflection analysis, we can write Eq. (2.7.29) as

Minl = _Erly” (2'7'32)

Substitution of the above equation into the equilibrium equation
(2.7.13)

Ely"+ Py=10 (2.7.33)

Equation (2.7.33) is the governing differential equation for the inelastic
column derived on the basis of the reduced modulus theory.

Again, comparing Eq. (2.7.33) with Eq. (2.2.10), the only difference is
that £ in Eq. (2.2.11) is replaced by E; in Eq. (2.7.33). Therefore, by
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following the same procedure as in Section 2.2, the critical load of the
inelastic column is
7*El E,
R P, (2.7.34)

The load expressed in Eq. (2.7.34) is called the reduced modulus load.
It is the largest load under which a real column can remain straight. This
will be described further in the next section.

In the reduced modulus theory, the effective modulus of the column is
of course the reduced modulus, E;. Unlike the tangent modulus, the
reduced modulus is a function of both material property and geometry of
the cross section of a column. In other words, given the same material
property, the reduced modulus will be different for different cross-
sectional shapes. Thus, the expression for E. given in Eq. (2.7.30) is only
valid for rectangular cross sections.

Idealized [ Section

For idealized symmetric I-sections (i.e., I-sections of equal flange areas
connected by a web of negligible thickness), it can be shown that the
reduces modulus is (see Prablem 2.12)
_ 2EE
" E+E

(2.7.35)

The reduced modulus, E,, is always smaller than the elastic modulus,
E, but larger than the tangent modulus, E,, i.e.,

E<E<E (2.7.36)
hence
P<P <P, (2.7.37)

2.7.3 Shanley’s Inelastic Column Theory

Shanley’s inelastic column theory® uses a simplified column model to
explain the postbuckling behavior of an inelastic column. Recall in the
tangent modulus theory, a slight increase in axial force is assumed at the
onset of buckling, so that no strain reversal occurs in any cross section as
the column bends at the tangent modulus load. On the other hand, in the
reduced modulus theory, the axial force is assumed to remain constant at
buckling, so that a complete strain reversal occurs at the convex side of
the column as the column bends at the reduced modulus load. In
Shanley’s inelastic column theory, it is assumed that buckling is accom-
panied simultaneously by an increase in the axial force. Thus, at any
instant as the column buckles, the net increase in axial force is not zero as
postulated in the reduced modulus theory, but equal to a finite value
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given by the difference of AP mpressive @04 APyepie (Fig. 2.32). The
magnitude of this increase in axial force AP is such that strain reversal
may occur at the convex side of the column as shown in the stress
diagram of Fig. 2.32.

By using a simple column model (Fig. 2.33) in which the column is
represented by two rigid bars connected by a deformable cell consisting of
two small longitudinal links, Shanley shows that the relationship between
the applied load P and the midheight deflection d can be expressed as

P=P(1+——m 7.
At i T+ {2.7.38)
2d 11—t

where

P, = tangent modulus load of the column
b = width of the column cross section
= E/E, in which E, is the tangent modulus

In deriving Eq. {2.7.38), Shanley assumes that the column begins to
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bend as soon as F, is reached. Thus, Eq. (2.7.38) gives the postbuckling
behavior of the column, i.e., the behavior of the column when P> P.
Figure 2.34 shows a plot of Eq. (2.7.38). It can be seen that as P
increases above P, there is an increase in midheight deflection d. As 4
becomes large, P approaches P,, the reduced modulus ioad. It should be
remembered that Eq. (2.7.38) was developed on the basis of the simple
caolumn model (Fig. 2.33}. For a real column in which E, varies across the
cross section and along the length of the column, the load-deflection
behavior of the column will follow the dashed lines in Fig. 2.34. An
important observation is that the maximum load of a really perfectly
straight inelastic column lies somewhere between the tangent modulus
load and the reduced meodulus load. Hence, the tangent modulus laad
represents a lower bound and the reduced modulus load represents an
upper bound to the strength of a concentrically loaded, perfectly straight
inelastic column. Experiments on real columns show that their maximum
strengths usually fall closer to the tangent modulus load than to the
reduced modulus load. This is because unavoidable imperfections always
exist in real columns along with accidental load eccentricities during the
testings. Both of these effects tend to lower the strength of real columns.
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Because of this, and because of the ease with which the tangent modulus
load can be obtained when compared to the reduced modulus load, the
tangent modulus is usually adopted in practice to represent the ultimate
strength of a centrally loaded real column.

In deriving the inelastic buckling loads of the column (P, and ), the
ends of the column are assurned to be pinned. If the end conditions of the
column are not pinned, the concept of effective length should be applied
with the term L on Eqs. (2.7.12) and (2.7.34) replaced by KL, the
effective length of the column.

2.8 DESIGN CURVES FOR ALUMINUM COLUMNS

The tangent modulus concept discussed in the preceding section can be
used directly to construct column curves for the design of aluminum
columns. A column curve is a curve that gives the critical buckling load
or critical buckling stress (o) of a column as a function of its slenderness
ratio (KL/r).

If we divide both sides of the tangent modulus load equation by A4, the
cross-section area of the column, we obtain

P #*EI
—=- 2.8.1
A A(KLy ( )
Denoting P
Tee=— (2.8.2)
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and recognizing that I = Ar*, where r is the radius of gyration of the cross
section, Eq. (2.8.1) can be written as

_ n2E,
Ter = (KLIr)

(2.8.3)

To plot o, versus KL /r using Eq. (2.8.3), we have to know E,, which,
in turn, is a function of ¢,,. Thus, to obtain a proper value of E;, we must
first know the stress—strain relationship of the material. The stress—strain
relationship of aluminum alloys as obtained from experiments (coupon
tests) can best be fitted by the Ramberg—Osgood equation.*

The Ramberg-Osgood equation has the form

a o \"
~2 000 (2) s
£ E+000 . (2.8.4)

where

E = elastic Young modulus
0y =0.2% offset yield stress
n = hardening parameter

Since E, is the slope of the ¢ — £ curve, we can therefore determine E,
from Eq. (2.8.4) by a direct differentiation
d E
PR _
de [ 0.002r1E( a )" ]
1+

Tp.2

(2.8.5)

Jq.2

Figure 2.35 shows the nondimensional stress-strain curve of the
aluminum alloy 6061-T6 (described in reference 11) with E =10,100 ksi
(69,640 MPa}, o,,=40.15ksi (277 MPa), and »=18.55. Using Eq.
(2.8.5), the values of E, for any given stress o can be determined. A plot
of E,/E versus a/oy, is shown in Fig. 2.36. Using this figure, the column
curve for this aluminum alloy can be obtained as follows:

1. Pick a value of o, called o.,.
2. Obtain E, from Eq. (2.8.5} or from Fig. 2.36.
3. Calculate the slenderness ratio from the equation
KL E
— =g (2.8.6)
r Oep
which is simply a rearrangement of Eq. (2.8.3).

Following the procedures outlined above, for any given o., a cor-
responding value of KL/r can be obtained. The variation of o, with
KL/ris shown in Fig. 2.37.
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FIGURE 2,35 Stress—strain curve of alnminum alloy 6061-T6

This curve can be used directly for column design. To select a section
to carry a specific load, the designer first picks a trial section, calculates
the value KL/r, and reads the corresponding o, from Fig. 2.37. If this
g, is preater than the actual stress o = PfA acting on the column, the
section is considered satistactory. Usually in design, a safety margin is
established by either lowering the value of critical stress o., and/or
by increasing the value of applied stress ¢ so that o is puaranteed to
exceed o.

Note that the column curve in Fig. 2.37 is applicable only to columns of
aluminum alloy 6061-T6. For other types of aluminum alloys, the
stress—strain curve will be different and hence the column curve will be
different. In fact, the column curve is extremely sensitive to the shape of
the stress—strain curve. For instance, if we approximate the stress—strain
curve of Fig. 2.35 (solid line) by two straight lines (dotted lines in figure),
the corresponding column curve will be like the dotted lines in Fig, 2.37,
As can be seen, there is a large discrepancy between the actual (solid
line) and approximate (dotted lines) column eurves. The apparent
discontinuity of the approximate column curves in Fig. 2.37 is due to the
sudden change in the value of E, as the initial slope of the approximate
stress—strain curve in Fig. 2.35 is replaced by a very much shallower
slope.
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FIGURE 2.36 Varation of tangent modulus with stress for aluminum alloy
6061-T6

2.9 5TUB COLUMN STRESS-STRAIN CURVE

The stub (or short) column stress—strain curve for a steel member is
generally used to determine the critical load of the steel column directly
from the tangent modulus equation (2.7.12). The value of E, in the
formula is evaluated from the slope of the stub column stress—strain
curve. This curve can be obtained by one of the following two methods

1. Experimental
2. Numerical
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2.9.1 Experimental Stub-Column Stress—Strain Curve

If a simple compression test is performed on a coupon cut from a steel
member, the stress—strain relationship of the coupon will exhibit a linear
elastic—perfectly plastic behavior as shown in Fig. 2.38 (dashed lines).
However, if the samc test is performed on a short length of column (stub
column fest) and the average stress o, = P/A is plotted against the axial
strain &, the o — ¢ relationship of the stub-column test will deviate from
that of the coupon as shown in Fig. 2.38 (solid line)/In particular, after a
certain average stress og,, has been reached, the stress—strain relationship
of the stub column follows the curve ABC instead of AEC. This
phenomenon is attributed to the presence of “lock-in™ or residual stresses
in the steel column. Residual stresses are created in the column in the
following way: Steel mewnbers are vsually heated at some stage during the
fabrication process. As they cool down, the part of the cross section for
which the surface area to volume ratio is the largest will lose heat more
rapidly than the part for which the ratio of surface area to volume is
small. This uneven cooling creates a set of self-equilibrating stresses in the
cross section. These are what is called the residual stresses.

For hot-rolled wide-flange shapes, which are used extensively in
building construction, the toes of the flanges have a larger surface area to
volume ratio than the regions where the web joins the flanges, hence the

r——
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toes of the flanges will cool faster. As the junctions of the web and
flanges begin to cool and shrink, the toes of the flanges, which have been
cooled and hardened already, will prevent the junctions from shrinking,
with the result that the junctions of the web and flanges will be left in
tension while the toes of the flanges will be left in compression. As for
the web, if the height to thickness ratio is large, then the central portion
will cool much faster than the portion where the web joins the flanges,
and so a compressive residual stress will be induced at the central
portion. On the other hand, if the height to thickness ratio is small, then
cooling will be more uniform, so that the whole web will be in a state of
tension.

Figure 2.39 shows schematically the residual stress distributions on the
flanges and web of a W8 X 31 hot-rolled section.'* As an axial force P is
applied to the sections, the stress distribution over the cross section will
change in several stages, as shown in Fig. 2.40. As the stress in any fiber
equals or exceeds the yield stress, that particular fiber will yield, and any
additional load will be carried by the fibers that are still elastic. From the
figure, it is clear that yielding over the cross section is a gradual process.
The fibers that have the highest value of compressive residual stresses will
yield the soonest, followed by the fibers that have a lower value of
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compressive residual stresses. Finally, the fibers that have tensile residual
stresses will yield as the applied load further increases. Because of this
gradual yielding process (plastification) over the cross section, the
stress—strain curve of a stub column follows the rather smooth curve
ABC in Fig. 2.38.

The main difference between the aluminum and steel members is that
for aluminum members the effect of residual stress is negligible and the
nonlinear stress—-strain behavior is due primarily to the material behavior.
This nonlinearity shows up in a coupon test. For steel members, coupon
tests show an elastic—perfectly plastic behavior, but the stub-column tests
show a gradual yielding because of the presence of residual stresses.

If a stub column stress—strain curve (obtained either experimentally or
numerically) is available, then the critical load of the steel column can be
determined directly from the tangent modulus formula Eq. (2.7.12) with
a simple modification for the value of E, that is evaluated from the slope
of the stb column stress—strain curve.

2,9.2 Numerical Stub Column Stress—Strain Curve

To generate the stub column stress—strain curve numerically, the cross
section is first divided into a number of small elements as shown in Fig.
2.41. Denote A7 as the area of the j element and A, as the remaining
area of the cross section that is still elastic, the stub column stress—strain
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curve can be traced numerically as follows:

1. Specify a strain increment Ag’ (a negative quantity) at the i cycle.
2. Calculate the stress increment Ag' from

Ad'=E Ag (2.9.1)

for every element that is still elastic.
3. Calculate the current state of stress ¢' from
o=0,+ZAd (2.9.2)

for every element that is still elastic. The stress o, is the value of
residual stress for that particular element and is taken as positive if the
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FIGURE 2.41 Discretization of cross section 1

residual stress is tensile and nepative if the residual stress is
compressive.
4. Check whether a particular clement has been yielded.
a. If |¢'| = g,, the element has yielded. Subtract the area A§ of this j
clement from the area of the cross section that is still elastic, i.e.,

L=AD - ZA7 (2.9.3)
where

z‘fifﬂ = area of the cross section that is still clastic at the i cycle
il = area of the cross section that is still elastic at the end of the
previous cycle

Proceed to the next element.
b. If |o'| < g,, the element is still elastic. Proceed to the next element.
c. If |o'| > g,, the state of stress of the element is larger than the yield
stress. We need to scale down the strain increment Ag’ by a factor r
given by

i
_ 0 o

o (2.9.4)

r

in which ¢! is the state of stress of the element at the end of the
previous cycle. Go back to Step 2 with A€ replaced by r Ag'.
5. Calculate the load increment AP' corresponding to the strain incre-
ment Ag' from .

AP = Ad'Al = EAL A (2.9.5)

6. Calculate the average stress increment Agl, at the end of the i cycle
by

Ao, = APA (2.9.6)
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7. Evaluate the current state of average stress of the cross section
o, =o'+ Adl, (2.9.7)
8. Finally, evaluate the current state of strain of the cross section from
=671+ Af (2.9.8)

Thus, for each value of strain calculated in Step 8, there is a correspond-
ing value of average stress calculated in Step 7. By repeating the process,
an average stress versus strain curve can be plotted. This numerically
generated ¢ — ¢ curve can be used in conjunction with Eq. (2.7.12) to
obtain P, for the column. £, is obtained as the slope of this stress—strain
curve,

E, can also be represented by the expression EA./A. This is
demonstrated as follows:

For a given load increment AP, we can write

AP =4 Aq,, (2.9.9)

where A is the area of the cross section and Ag,, is the average stress
increment of the cross section. On the other hand, AP is related to Ae by

AP=EA, A¢ (2.9.10)

where E is the elastic modulus and A, is the area of the elastic cross

section.
Equating Egs. (2.9.9) and (2.9.10), we have

AAc,=EA, Ae (2.9.11)
and
Ag,, EA,
—= 2.9.12
At A ( )

Since E, is the slope of the average stress—strain curve, it follows that

E= do,, Aoy _EAG
de Ae A

(2.9.13)

Note that the ratio A,/4 can easily be calculated in the numerical
procedure described above at any stress level g, by forming the ratio
/A at the end of Step 4.

2,10 COLUMN CURVES OF IDEALIZED STEEL I-SECTION

In Section 2.8, we discussed the column curves for aluminum columns.
For aluminum columns, the nonlinear stress—strain behavior is due
primarily to material nonlinearity. This nonlinear stress—strain relation-
ship can be approximated closely by the Ramberg—Osgood equation [Eq.
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(2.8.4)]. Upon differentiation of this equation, an expression for E, can
be obtained [Eq. {2.8.5)]. With the tangent modulus known, an
aluminum-column curve can be constructed by the procedure outlined in
that section.

For steel columns, the stress—strain behavior of a coupon is elastic—
perfectly plastic as shown in Fig. 2.38. As a result, the tangent modulus
can not be obtained directly from this curve. Instead, it should be
obtained from the slope of a stub-column stress-—-strain curve (Fig. 2.38).

If a stub-column stress—strain curve (obtained either experimentally or
numerically) is available, then the critical load of the steel column can be
determined directly from the tangent modulus formula [Eq. (2.7.12)],
with E, determined from the slope of the stub-column stress—strain curve.
However, if a stub-column stress-strain curve is not avaiiable, an
analytical approach can be used to find P, for a given value of KL/r in
the inclastic range (for KL/r in the elastic range, the critical load P, is
the Euler load, F,). In this approach, an idealized I-section is used. An
idealized I-section is an I-section with negligible web thickness. In
addition, an assumed residual stress distribution is also used. For
illustration purposes, an idealized I-section with linear, varying residual
stress is shown in Fig. 2.42. In the figure, o, denotes the value of
compressive residual stress at the toe of the flanges and o, the value of
tensile residual stress at the flange-web junctions, To maintain self-
equilibrium in the absence of an externally applied force, the tensile and
compression forces resulting from the tensile and compressive residual
stresses must be in self-balance. If the flanges of the idealized I-section
are identical and are of uniform thickness, we must have

O =0,=0, (2.10.1)

Now, if an external force is applied concentrically to this column,
portions of the cross section will yield, leavmg only part of the cross
section elastic. The yielded portion cannot carry any “additional load for
at idealized elastic—perfectly plastic, stress—strain relationship. As a
result, only the elastic core (the elastic portion of the cross section) will
be effective in resisting the applied load. In other words, only the elastic
part of the cross section will provide the flexural rigidity to the column as
it buckles. Based on this argument, the critical load of the column can be
written as

TElL L

P.= (KLY =7 P, (2.10.2)

where

I. = moment of inertia of the elastic core of the
column cross section
P, = Euler buckling load
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The ratio L/I in Eq. (2.10.2) depends on (i) the axis of bending of the
column, (ii) the shape of the cross section, and (i) the distribution of
tesidual stresses over the cross section.

For an idealized I-section with a linear variation of residual stresses
(Fig. 2.42), the ratio I,/ can be established as follows:

Strong Axis Bending

If the moment of inertia about the centroidal axes of the flanges are
ignored, the ratio I./I about the strong (x — x) axis can be written as

L 2be )R8 by
I 2(bu)h?ld b

The quantities by, ¢, and h are as shown in Fig. 2.43.

(2.10.3)

Woeak Axis Bending
The ratio /! for the column bend about the weak (y — y) axis is
L 2AAI12_ (b’
I 2ub3/12 bg
Using Egs. (2.10.3) and (2.10.4), we obtain from Eq. (2.10.2):

(2.10.4)
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FIGURE 2.43 Partially plas-
tified cross section

For strong axis bending

For weak axis bending

Columns

/
s
M

\\,/
o
J _t
o ) by
\
Ih‘\
rd Y
,/’ ___AL\A,_J_OT’ 1
} \‘TV
Hi . |
Do
!
| by

3
)2

(2.10.5)

(2.10.6)

It is obvious from Egs. {2.10.5) and (2.10.6) that the critical loads are
different for the same column bent about different axes. Since neither P,
nor by is known, we need another equation ta relate P, and bg. This
equation can be obtained by writing the expression for the axial force
acting on the column that corresponds to a partially piastified cross

section (Fig. 2.43).

P= z[aybfff - %(Uy — Oa)becti] (2.10.7)

In Eq. (2.10.7), @, is the stress at the middle of the flange. From
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similar triangles, it can be shown then

g, =0y 20,

2
b/2 b2 (2.10.8)
or
bfe
a,— gy =20, (2.10.9)
by
Substituting Eq. (2.10.9) into Eq. (2.10.7) gives
biz'ctf
P= Z[GYbftf Bk (2.10.10)
f
or
bl’c :
P=A[ay— a,(b—) (2.10.11)
f

where A =2b; is the area of the cross section of the idealized I-section.
Rearranging and realizing that a,, = P/A is the average stress over the
cross section, we have

b [y~ Ow
bf a;

On substituting Eq. (2.10.12) into Eqs. (2.10.5) and (2.10.6), we have
for strong axis bending

(2.10.12)

po= 2" %wp (2.10.13)

or divide both sides by Ag,

Ter _ J 22— T / A2 (2.10.14)
o g,

Y

and, for weak axis bending,

_ 2
Pc,=(%) P, (2.10.15)
or :
_ £y
a—“=(M) /Ag (2.10.16)
a, a,

. . 1 , _
in which 1. = - % (KL/r) is the slenderness parameter,

For hot-rolled, wide-flange sections o,=0.3a,. Using this value for g,
and specifying a value of o.( = g,,), a corresponding value for A. can be
determined. By repeating this process, a column curve for /g, versus
A, can be plotted. Figure 2.44 shows such a plot. Note the difference in
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FIGURE 2.44 Column curves (theoretical, CRC, and AISC)

load-carrying capacity of the column for bending about different axes. In
general, for hot-rolled, wide-flange sections, the load-carrying capacity of
the column is larger for strong axis bending than that for weak axis
bending. This is because the detrimental effect of compressive residual
stress at the tips of the flanges is more pronounced for weak axis bending
than that of streng axis bending.

Aiso shown in the figure are the column curves for I-sections with
parabolic residual-stress distributions. Again, it is obvious from the figure
that the distributions of residual stresses in a cross section have an
influence on column strength. Extensive research at Lehigh'®™" has
shown that the distributions of residual stresses for hot-rolled I-sections
usually fall between that of the iinear and parabolic types. As a result,
they represent upper and lower bounds to the strength of hot-rolled
H-columns.

2.11 DESIGN CURVES FOR STEEL COLUMNS

2.11.1 Column Design Curves

Column Research Council Curve

On the basis of both column curves developed previously for the
idealized I-shaped columns with linear and parabolic residual stress
distributions as well as test results of a number of small and medium-size
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hot-rolled, wide-flange shapes of mild structural steel, the Column
Research Council (CRC) recommended in the first and second editions of
the Guide'® a parabola of the form

KLy’

r

ac,=ay—B( (2.11.1)
to represent the column strength in the inelastic range. The column
strength in the elastic range, however, is represented by the Euler
formula. The point of demarcation between inelastic and elastic behavior
is chosen to be 0., =0.50,. The number 0.5 is chosen as a conservative
measure of the maximum value of compressive residual stress present in
hot-rolled, wide-flange shapes, which is about 0.3g,. To obtain a smooth
transition from the parabola to the Euler curve as well as to maintain a
compromise between the strength of columns bent about the strong and
weak axes, the constant B in Eq. (2.11.1) is chosen to be o2/47°E. The
slenderness ratio that corresponds to o.=0.50, is designated as C,
where
2m°E

a

C.= (2.11.2)
¥

Thus, for columns with slenderness ratios less than or equal to C,, the
CRC curve assumes the shape of a parabola and for slenderness ratio

exceeding C,, the CRC curve takes the shape of a hyperbola, i.e.,

(KL/ry KL
"”[1_ 2C2 ] - =G
Ox={ m°E KL
KL\? - oG
(T) (2.11.3)

For comparison purposes, Eq. (2.11.3) is rewritten in its load form in
terms of the nondimensional quantities P/FP, and A, in which P, is the
yield load given by P, = Ao, and A, is the slenderness parameter given by
A.=(KL/r)Va,/n°E
5_{1—0.25,13 A<V2 2114
P A2 A>V2 A1.4)

The CRC curve is plotted in Fig. 2.45 in its nondimensional form [Egq.
(2.11.4)]. ‘
AISC Allowable Stress Design Curve
The CRC curve divided by a variable factor of safety of

LY A e

T378
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FIGURE 2.45 Column-design curves

in the inelastic range and a constant factor of safety of 23/12 in the elastic
range gives the AISC Allowable Stress Design (ASD) curve. The factors
of safety are employed to account for geometrical imperfections and load
eceentricities that are unavoidable in real columns. The AISC-ASD curve
is also plotted in Fig. 2.45. The ASD column curve is used in conjunction
with the ASD {ormat given by

R,
F.S.

= Ou (2.11.6)
i=1
where

R, = nominal resistance. (For column design, R, /F.S. is represented
by the ASD column curve)
@, = service loads.

AISC Plastic Design Curve

The ASD curve muitiplied by a factor of 1.7 forms the AISC Plasuc
Design (PD) curve (Fig. 2.45). In plastic design, only the inelastic regime
of the curve is used because of the slenderness requirement. The design
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format for plastic design of columns is thus

LIR, &
2>y S Ou (2.11.7)

F.S. i=1
where y is the load factor used in the present AISC-PD Specification.
The values for y are y = 1.7 for live and dead loads only, and y = 1.3 for
live and dead loads acting in conjunction with wind or earthquake loads.

Structural Stability Research Council Curves

Both the ASD curve and PD curve are originated from the CRC curve,
which was developed on the basis of the bifurcation concept that assumes
the column to be perfectly straight. Although the effect of residual stress
is explicitly accounted for, the effect of geometrical imperfections is only
accounted for implicitly by applying a variable factor of safety to the
basic strength curve.

Realizing that perfectly straight columns are rarely encountered in real
life, researchers'”'® investigated theoretically and experimentally the
strength and stability of initially crooked imperfect columns. It is evident
from the results of these studies that the strengths of different types of
steel columns, which are the result of different manufacturing and
fabrication processes, different sizes and steel grades, and different axes
of bending, may vary considerably, so that multiple-design curves may be
desirable.

On the basis of a computer model developed for a geometrically
imperfect column with an initial out-of-straightness at midheight equal to
0.001L, and with actual measured values of residual stresses;. a set of
three multiple-column strength curves from a total of 112 columns being
investigated was developed.'” Each of these curves is representative of
the strength of a related category of columns. In the categories covered
by these column curves we find hot-rolled and cold-straightened mem-
bers, wide-flange and box shapes, as well as round bars and members
composed of welded plates.

The Structural Stability Research Council (SSRC), in its third edition
of the Guide," presents these three column curves along with the former
one (CRC curve).

. The expressions for the three SSRC curves are the following:

Curve 1
1 (yield level) (0=4.=<0.15)
0.990 +0.1224.— 0.367A2  (0.15<A.<1.2)
§= 0.051 + 0.8014;2 (12<i.<1.8) (2.11.8a)
7 1 0.008 +0.9424;2 (1.8<A.<2.8)

AZ? (Euler buckling) (A.=2.8)
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Curve 2
1 (yield level) (0= A.<0.15)
1.035 — 0.2024, — 0.22222 (0.15<A.<1.0)
Pl 011140636471 4+ 0.087252  (1.0=A.<2.0) (2.11.8b)
B 0.009 +0.877422 (2.0=2.<3.6)
A=2 (Euler buckling) (Ac=3.6)
Curve 3
1 (yield level) (0= 4. <0.15)
1.093 — 0.6224, (0.15<A,<0.8)
; =¢ —0.128+ 070727 —0.102A72  (0.8<A.<2.2) (2.11.8)
" | 0.008 + 0.79242 (2.2< A, <5.0)
A7 (Euler buckling) (A =5.0)

These equations were obtained by curve-fitting a parabola or hyperbola
to the designated characteristic column curves that are the arithmetic
mean curves of the three divided categories. These column curves are
used in conjunction with the Colurnn Selection Table shown in Table 2.3.

The curves in each category as developed based on the srability
analysis. In the stability analysis, the complete load-deflection behavior
of the column is traced from the start of loading to the ultimate state.
Hence, a stability analysis is also known as a lpad-deflection analysis. The
peak point of this load-deflection curve is the maximum load the column
can carry. As mentioned previously, the stability analysis is quite
different from that of the bifurcation analysis. In the bifurcation analysis,
the load that corresponds to the state of bifurcation of equilibrium is
calculated using an eigenvalue analysis. However, for columns that are
initially crooked, lateral deflection begins as soon as the load is applied and so
there is no distinct point of bifurcation. Stability analysis of columns wil] be
discussed in Chapter 6. Usually, recourse must be had to numerical method
for solutions.

For comparisons, the three SSRC curves are also plotted with the
CRC, ASD, and PD curves in Fig. 2.45. It can be seen that these curves
belly down in the intermediate slenderness range (0.75<A.<1.25)
because of the combined maximum detrimental effects of both residual
stresses and initial crookedness on the column strength as predicted by
the computer model. Tests of real columns have shown that the
detrimental effects of residual stresses and initial crookedness are not
always synergistic and so the SSRC curves with “belly down” in the
intermediate slenderness range will be too conservative for most columns
in building frames.



Table 2.3 55RC Multiple Calumn Curves Selection Table (Numbers in parenlheses may be subjected to later change)

Steel grade (ASTM)

Hybrid
. A5T72
. . Bending A7 A A A A514 FL A514 FL Ad41 FL
Fabrication details axis A36 242 50 65 441 514 A441 WEB A3 WEB A36 WEB
: Major 2 1 1 1 1 1 — — —
Light : ;
Rolled wide-flange ﬁ:}g: % % % i % i _ — —_
Heavy Minor 3 Ez} 2 @ (2 1 - — —
Flame-cut Major 2 2 2 1 2 1 1 1 2
Minor 2 2y 2 2 2 2 1 1 2
Light Universal Major 3 2 2 2 2 1 1 1 2
mil Minor 3 3 3 2 3 2 2 2 2
Welded buili-up H Flame-cut Major 2 (2) 2 (2) 2 (1) (1) 1) (3]
. Minor 2 () 2 (2 2 (@ 2) 2) (2)
“aVY  Universal Majr 3 @ @ @ 2 @ (2) 2) (2)
mill Minor 3 (2) (23 (2 2 (2 2) (2) (3)
Massive solid — @ M O W MW — — —
. Extruded _
Circular Tubes rolled — m O @O W O (IO — — —
Welded — @ o @ O @ @ — — -
Major 1 1 1 1 1 1 — — —
Extruded rolled Minar Elg {1; Elg &g Elg Elg _ _ _
Flame-cut Major 2 2 2 1 2 1 — — —_
Minar 2 2 2 1 2 1 — — —
Box Welded  piversal Major 2 (B {3 @) @ é]g — — —
mill Minor 2 2 2 1 2 1 — — —
Stress-relieved shapes (all types) M;’gg; % i % % i 11 } } %

LTl

Cold-straightened (gagged or roller-straightened) are designed according to the column curve immedialely above the curve lor the corresponding unstraightened
shape. This is not valid for shapes already assigned to eurve 1.
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AISC Load and Resisfance Factor Design Curve

As a result, the AISC Load and Resistance Factor Design (LRFD)
Specification® adopts the following curve

P [exp[-0419A7] A, =15
—= 2.11.
P, {0.877.1;2 A.>1.5 (2.11.9)
to represent column strength. Note that only one curve is recommended
for the whole range of possible column strengths. In the development of
this curve, the following assumptions were made:

1. The column has small end restraints corresponding to an end-restraint
paramecter G =10 (see Chapter 4) or an effective length factor
K =0.96.

2. The column has an initial crookedness sinusoidal in shape and has an
amplitude of (1/1500)L at midheight.

3. The axial force is applied at the centroid of the column end cross
sections.

This LRFD curve is plotted in Fig. 2.45 together with all other curves
described above. Note that the LRFD column curve as represented by
Eq. (2.11.9) is comparable to SSRC Curve 2, especially in the range
0=A <10 The LRFD format is

m
PR = 2, viQui (2.11.10)
i=1
where o
R, = nominal resistance [ T
Qn = nominal load effects i =
@ = resistance factor (see Table 1.2) SRR

¥ = load factor {see Table 1.1)

Note that the LRFD format has the features of both the ASD and PD
formats in that factors of safety are applied to both the load and
resistance terms to account for the variabilities and uncertainties in
predicting these values. Furthermore, these load and resistance factors
{¢, v) are evaluated based on first-order probabilistic approach. Since
different types of loads have different degrees of uncertainties, different
load factors are used for different types of loads (e.g., 1.6 for live load,
1.2 for dead load, etc.); therefore, the LRFD format represents a more
ratianal design approach. &

The expressions for various column curves described above together
with the three state-of-the-art design formats (ASD, PD, and LRFD) are
summarized in Tables 2.4 and 2.5.

- . ilﬁ

{

Ay




2.11 Design Curves for Steel Columns 129

Table 2.4 Summary of Column Curves

Column curves Column equations
P 2
CRC curve —=1-=F L=V2
P, 4
P 1
—==3 A >\/i
P, i
A
P 4
N — = =32
AISCASD aurve §+§(1=) l(k)s A=V2
3 8\W2 TR \\2
P 121
=53 A.>V2
P, 23A;
e
- — =10 A=V2
AISC-PD curve ) §+§(§£)_E(ﬁ)3 <V2
37 8\W2) B\W2
AISC-LRFD P£= exp {—0.41942) A.=s15
curve y
LI 3>15
P, A

2.11.2 Single Equation for Multiple-Column Curves

Although multiple-column curves give a more realistic representation of
column strengths, the use of these curves in design is rather cumbersome.
For example, for the SSRC multiple-colummn curves, each curve is
represented by nine or ten coefficients. It is thercfore desirable to have a
single equation that can be used to represent all these curves. In the
present section, we will discuss two mathematical equations that can be

Table 2.5 Summary of Design

Formats
R m
ASD — = .
F.S. § O
PD R,=y 2 Q.

LRFD PR, = i vl

1
i
H
i
i
§
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r) -

FIGURE 2.46 Physical model of imperfect
column P

used to represent these multiple-column curves. Both are developed
based on the postulation that an initially crooked column with the initial
crookedness at the midheight of the column equal to 8; (Fig. 2.46) will
fail under the combined action of axial force and (secondary) bending
moment (arising from the P — § effect) according to the criterion

—+—=1 2.11.11
2 ( )

in which

P = applied axial force
M = bending moment arising from the P — 6 effect {Egs. (2.6.20) and
(2.6.22)]
P§,
M=—— 2.11.12
1= P/F, @1112)
F, = ultimate axial capacity of the member in the absence of M
M, = ultimate moment capacity of the member in the absence of P

Rondai-Maquoi Mathematical Form™

The Rondal-Maquoi mathematical expression can be developed by
assuming that the ultimate strength of a column is reached when yielding
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occurs at the most severely stressed fiber, i.e., when

P M
—+—=1 2.11.13
P M, ( )

Using Eq.A2.11.12), we have

Pé,
AR N (2.11.14)

or

P .
St =1 (2.11.15)

Substituting M, =So, and P,/P.=A into Eq. (2.11.15) and defining
n=06,4/S gives
Lid
P P
—+—2L—p=1 (2.11.16)

MR
¥y

-

Solving for P/P, yields
P_(L+n+AY V(1 +n+2a0)° — 44

R, Z¥E (2.11.17)
Equation (2.11.17) is the Rondal-Maquoi equation. By setling
n=a(A—0.15) (2.11.18)

where

0.103 (SSRC Curve 1)
w=4 0.293 (SSRC Curve 2) (2.11.19)
0.622 (SSRC Curve 3)

the three SSRC curves can all be closely approximated (Fig. 2.47).

Lui-Chen Mathematical Form™
The Lui-Chen equation can be developed by setting
F,=Fh (2.11.20)

M.=M, (2.11.21)
where

P, = tangent modulus load of the column
M,, = flow moment (Fig. 2.48).
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FIGURE 2.47 SSRC multiple-column curves and Rondal-Magquoi equation

FIGURE 2.48 Schematic representation of average flow moment M,
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Thus, the criterion of failure for the column is

P M
E+E—1 (2.11.22)

Substituting Eq. (2.11.12) into Eq. (2.11.22) yields

P P6;
= (2.11.23)
B (-L)u

p/

The flow moment can be expressed as the product of the plastic section
modulus Z and an average flow stress oy

M, =Za, (2.11.24)

The flow stress is such that o,/f < 0y < 0,, in which fis the shape factor
of the cross section. The shape factor is defined as the ratio of the plastic
section modulus Z to the elastic section modulus S.

In view of Eq. (2.11.24), Eq. (2.11.23) can be written as

—— =1 (2.11.25)
P
or )
(5)(5)(5) + Po; 1 (211.26)
P,/\P,J\P,

where § = elastic section modulus.

Defining
_ E P,
=— ==t AL
E=p=% (2.11.27)
f=§ (2.11.28)
a,,=%' (2.11.29)

and realizing that

P,
=32 11.30
Pk 2 )
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where A, = BN (ﬁ) Eq. (2.11.26) can be written as
T VE\r
(-}‘;)AEE + Py =1 (2.11.31)
) (1 - Fy;tz)faysU,
or
Ll
P\ - P
(—)A§E+ L— =1 (2.11.32)
Py 1 _ﬁ A2
P
in which
_ 8,4
1=%.5 (2.11.33)

is the imperfection parameter.
Solving Eq. (2.11.32) for P/P, gives

P_q+(1+EE- V[ + 1+ E)A —4EA;
P, 2EAL

¥

(2.11.34)

Equation (2.11.34) is the Lui—Chen equation for all column strength
curves.

The maximum load a column can carry is a function of 7, E, and A_.
Any column curve can be generated using this equation provided that the
parameters 7}, E, and A, are known.

Now, expressing the initial crookedness 8; of a column as a fraction of
the columm length L

6i=vyL (2.11.35)
and realizing that
I Ar
§=2=2" (2.11.36)
c ¢

where
¢ =distance from neutral axis to extreme fiber of the cross section
r =radius of gyration
Equation (2.11.33) can be written as
cyL

for (2.11.37)
Yy

ﬁ:
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or, in terms of A, (with K =1 for pinned-ended column)

meEoOE) e

Note that this imperfection parameter reflects the effects of yield stress
(o,), geometric imperfection (y), axis of bending (f), cross-sectional
shape (c, r), and slenderness ratio (4.) on the load-carrying capacity of
columns.

The average flow stress o, depends on the degree of plastification of
the cross section and is a function of the load level and column types.
Since for a column the degree of plastification depends on the load level
and the load level is a function of the slenderness ratio of the column,
this flow stress can be thought of as a function of the slenderness
parameter A.. If A, is very large, P/FP, is very small, the problem
resembles a beam problem and the plastic limit moment M, will govern
the ultimate state, so o, will approach a,. On the other hand, if A, is very
small, P/P, will approach unity, the problem resembles an axially loaded
short-column problem and the yield moment M, will govern the ultimate
state, so op will approach o,/f where f is the shape factor.

On the basis of this argument, the following expression for the flow
stress is proposed:

1
Jg9= (EAE_-I-'})GY (21139)
The constant § can be determined from experiments or from calibra-
tion against existing column curves. For small and medium-size hot-
rolled, wide-flange shapes, the value of § for strong axis bending can be
taken as —0.378 and for weak axis bending as —0.308. By substituting
Eq. (2.11.39) into Eq. (2.11.38), we can write :

[ \/—(y) )} (BAZ+fA.) (2.11.40)

For a given column, the terms inside the brackets of Eq. (2.11.40) are
known, so it can be written in the general form as

i1 =aAd+bA. (2.11.41)
where

E

i =n\/:ﬁ8 (2.11.42)
o, fr

_ E

b= ::\/:E (2.11.43)
0'), r

The modulus ratio E can be evaluated if the tangent modulus E, is
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§=_o.
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FIGURE 2.49 Comparison of Lui-Chen equation with computer model by
Sugimoto and Chen

known either from an experimental or a theoretical approach. Recall that
the tangent modulus is the slope of the nonlinear stress—strain curve. This
nonlinearity is due to material for aluminum columns but for steel
columns, it is due to residual stresses existing in the steel cross sections.
Thus, this modulus ratio will reflect material nonlinearity and imperfec-

FIGURE 2.50 Comparison of Lui—Chen eguation with computer model by
Sugimoto and Chen
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Table 2.6 Values of d and b for
SSRC Multiple-Column Curves

SSRC curve a b
1 Q.002 —0.001
2 —-(.034 (0.159
3 -0.092 0.453

tions. For small and medium-size hot-rolled, wide-flange shapes, this
modulus ratio can be converniently taken as the ratio of the Euler curve to
the CRC curve, i.€.,

P. (A.<\|2)

E=p=c=={(-2DA
v feme [ (Ae>\)

(2.11.49)

Figure 2.49 shows two column curves, generated numerically by
Sugimoto and Chen® for a W12 X 65 section, bent about the section’s
strong axis with initial imperfection &; at midheight equals to 0.001L and
0.00ZL. Also shown in the figure are the two curves generated using the
Lui-Chen equation. It can be seen that good agreement is generally
observed between the numerically generated curves and the curves
predicied using the mathematical equation. A similar comparison for the
same column bent about its weak axis is shown in Fig. 2.50. Again, good
agreement is generally observed.

Equation (2.11.34) can also be used to approximate the SSRC
multiple-column curves. By using the values of @ and & shown in Table
2.6, the SSRC column curves can be closely approximated (Fig. 2.51).

2.12 SUMMARY

For a perfectly straight column that buckles in the elastic range, the
differential equation of equilibrium can be written as

Ely"+ Py = +Vox + M, (2.12.1)
where

E = elastic modulus
[=moment of inertia of the cross section
P = axia] force
Vo =end shear
My = end moment
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FIGURE 2,51 Comparison of SSRC curves with Lui-Chen equation

The peneral solution to Eq. (2.12.1) is

1%
y=Asinkx+Bcoskx:tF°x:t% (2.12.2)

where k = VP/E! and A and B are unknown coefficients.

Since there are more unknowns in Eq. (2.12.2) than geometrical
boundary conditions available in the problem, there is no unique solution
for this equation. This class of problem is known as the eigenvalue
problem. In an eigenvalue problem, nontrivial solutions for the depend-
ent variable exist only for certain values called eigenvalues. The
nontrivial solutions that correspond to these eigenvalues are called
eigenvectors. Because there are more unknowns than boundary condi-
tions, only the shape and not the amplitude of the eigenvector can be
determined. For the case of a column, the eigenvectors are the buckling
modes of the column and the eigenvalues are the values of &. The lowest
value of k pives the critical load of the column.

At the critical load, the column ceases to be stable in its initial straight
position. A small lateral disturbance that occurs at the critical load will
cause a lateral deflection that will not disappear as the disturbance is
removed.

Equation (2.12.1) is a second-order linear differential equation with
constant coefficients. This equation depends on the end conditions of the
column, since V, and M, are different for different end conditions. A
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more convenient form that is independent of end conditions can be
obtained by differentiating Eq. (2.12.1) twice to give

Ep™ + Py"=0 (2.12.3)
whose general solution is
y=Asinkx+Bcoskx+ Cx+ D (2.12.4)

Alternatively, Eq. (2.12.3) can be obtained by considering equilibrium
of an infinitesimal segment of a column. Note that there are five
unknowns (&, 4, B, C, and D) in Eq. (2.12.4) and there are only four
boundary conditions (geometrical and natural). Again, this is an eigen-
value problem. The lowest eigenvalue to Eq. (2.12.4) will thus give the
critical load of the column.

For end-restrained columns, it is convenient to modify the unbraced
length of the column to an equivalent length of a pinned-ended column
so that the column curves prepared for pinned-ended columns can be
used directly for the restrained case. This can be achieved by multiplying
the actual length of the end-restrained column by an effective length
factor defined as

K=VEJP, (2.12.5)

The key phenomenon, that is associated with a column instability, is
known as the P — & effect. This effect arises as the axial force P is acting
through the displacement 8 of the member relative to its chord. The
result of this effect is an increase in lateral deflection and moment in the
column. This P — & effect can be studied conveniently by analyzing an
eccentrically loaded or initially crooked column. Fram an elastic analysis,
it can be shown that the moment in these columns can be obtained by
simply multiplying the first-order moment by the amplification factor

sec (g VE/ Pe) (for eccentrically loaded columns)

Ap= 1 (2.12.6)

1-(P/P)
For perfectly straight columns that buckle in the inelastic range, the

critical load can be obtained by simply replacing the elastic modulus E by
an effective modulus E_; where

(for initially crooked columns)

E, (according to the tangent modulus theory)

Eur={ .
T lE (according to the reduced modulus theory)

The use of this effective modulus can, approximately, take into account
the material inelasticity. In the tangent modulus theory, no strain reversal
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is allowed, whereas in the reduced modulus theory, a complete strain
reversal is allowed, and where a complete strain reversal is assumed to
occur on the convex side of the column as it buckles. Although the
reduced modulus theory is theoretically correct, the validity of the
tangent modulus theory for predicting the buckling strength of real
columns is demonsirated and explained by the Shanfey's inefastic column
theory.

Since the tangent modulus load represents a lower bound to the
buckling strength of real columns, and since it is easier to evaluate than
the reduced modulus load, the tangent modulus theory is used exten-
sively to develop column strength curves for the purpose of design. For
instance, the CRC column curve was developed on the basis of the
tangent modulus concept. By introducing a safety factor to the CRC
curve to account for imperfections of the columns and load eccentricities,
one can develop the AISC-ASD curve, which is contained in the present
ASD Specification.’

The tangent modulus concept is based on the eigenvalue or bifurcation
analysis. In using the eigenvalue analysis one must assume that the
column is geometrically perfect. Columns in reality are never perfect. As
a result, an alternate and more elaborate approach that explicitly takes
into account the effect of geometrical imperfections in the columns may
be desirable. This approach is known as the stability or load-deflection
analysis. In contrast to the eigenvalue analysis, in which only the load
that corresponds te the point of bifurcation can be obtained, the
load-deflection analysis permits us to trace the complete load deflection
response of the column from the start of loading to failure. Because of
the complexity in calculation inherent in the load-deflection analysis,
recourse to numerical techniques is inevitable. The SSRC multiple-
column curves have been developed on the basis of an extensive
load-deflection analysis. The SSRC curve 2 represents the column
strength of medium-sized hot-rolled, wide-flange shapes frequently used
in building construction. This curve forms the basis of the new AISC-
LRFD column curve, which is contained in the present LRFD
Specification.®

PROBLEMS

2.1 Find the ratio of the critical loads that corresponds to the first two buckling
modes of the two columns shown in Fig. P2.1. Sketch the deflected shapes
of the columns.

e El=constant e
. L |
| !
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P
g El=constant

R

FIGURE P2.1 !

2.2 Find the buckling load of the rectangular section pinned at both ends (Fig.
P2.2).

Section A-A
-

el
—

T

FIGURE P22 p

“ 2.3 Find the buck]inﬁ load of the fixed—iree stepped column shown below (Fig.
P2.3).

FIGURE P23 B

2.4 Find the buckling loads of the columns shown in Fig. P2.4a-c.

{a} I > I,

FIGURE P2.4
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(bl

L 0.5L

B
Ei=constanl

{c)

l__ff L - 7__#__ ——
FIGURE P24 El=constant

2.5 For the eccentrically loaded column shewn in Fig, P2.3, find an approximate
expression for the amplification factor Ar in the form Ar=a/(1- P/P.)
where g =f(P/F.). Compare it with the exact expression Ap=sec[(xn/
2)VP/P].

P ‘ El-constant | P
o ) i
FIGURE P2.5 ~ -l

2,6 Discuss the assumptions used and the limitations of
a. the Secant formula
b, the Perry-Robertson formula

2.7 Plot the tangent modulus column curve for an aluminum alloy column with
n =230, g;,=22.78ksi (157 MPa), E = 10,181 ksi (1.6 x 10° MPa).

2.8 Plot the reduced modulus column curve for the aluminum column in the

above problem with the following cross section (Fig. P2.8).

a. Find the ratio P./P, at A,=0.4 and Ay= 1.2 where Ay= 1/xV{(0q/E) (L]
r).

b. Approximate the stress—strain behavior of the aluminum alloy by two
straight lines and re-evaluate the ratio P/P, at A,=0.4 and A,=1.2.
What conclusions can you draw upon comparison with the values
obtained in part (a)?

2.9 State the basic assumptions made in the development of the
a. CRC eolumn curve
b. SSRC multiple-column curves

2.10 Describe the inter-relationship and design format of
a. AISC-ASD column curve
b, AISC-PD column curve
c. AISC-LRFD column curve

How is the concept of “safety factor” incorporated in these design formats?
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2.11 Design a W-section pinned at both ends and braced at midheight in the
weak direction (Fig. P2.11) with an occupancy live load (L,) of 60 kips
(267 kN), a roof live load (L,) of 40 kips (178 kN), and a dead load (D,) of
60 kips (267 kN) based on
a. the ASD format
b. the PD format
c. the LRFD format

2,12 Derive the reduced modulus of elasticity £ for an idealized [-section shown
in Fig. P2.12, in which it i5 assumed that one-half of the cross-section area is
concentrated in each flange and the area of the web is disregarded.

Al fm———— ——— — A2

FIGURE P2.12 ]

2.13 Find the buckling load of the column shown in Fig. P2.13.

I~ o

ij g P L 2

]

P z I
_?; g - ° - 2P

FIGURE P2.13 {b)

2.14 Find the critical load P for the structure shown in Fig. P2.14.

hinge
A
P El B( 100EL ¢

3h | h

— -~
} 4h ‘

FIGURE P2.14 | - B ——
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Chapter 3

BEAM-COLUMNS

3.1 INTRODUCTION

A beam-column is a structural member that is subjected to both bending
and compression. In reality, all members in a frame are beam-columns.
However, if the axial force effect in a member is negligible compared to
the bending effect, it is more convenient to analyze and design that
member as a beam. On the other hand, if the bending effect in a member
is secondary compared to the axial force effect, it is more convenient to
treat such a member as a column and analyze and design it accordingly.
Thus, beams and columns are regarded as special cases of beam-columns.

Because for a beam-column both the bending and axial effects are
significant, the analysis of this type of member involves the features of
both the deflection problem as a beam and the stability problem as a
column. As a beam problem, the bending moments induced m the
member by the application of end moments, or by in-span transverse
loadings, or by a combination of both, will cause lateral deflections.
These bending moments and lateral deflections are called primary
bending moments and deflections. As a column problem, the axial force at
certain critical values will cause instability of the member. In the case of
beam-columns, the axial force will act through the lateral deflection
caused by the bending effect to produce additional lateral deflection and
moment in the member. To distinguish between the deflections (and
moments) induced by the bending and axial-force effects, it is customary
to refer to the deflection (and moment) caused by the primary-bending
effect as primary deflection (and moment), and to refer to the additional

147
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deflection (and moment) caused by the axial-force effect as secondary
deflection (and moment). Note that the words primary and secondary are
used solely for the purpose of convenience and not for the purpose of
representing the relative importance of the two effects. In fact, the
secondary defiection (and moment) of a beam-column caused by the
axial-force effect is sometimes more significant than that caused by the
primary bending effect.

Although the analysis of a beam-column is more complicated than that
of a beam or a column, closed-form solutions of most beam-columns are
available so long as they stay within the realm of purely elastic behavior
in which the moment can be related to the curvature by a linear
relationship. (See, for example, Theory of Elastic Stability by Timo-
shenko and Gere.") If yielding or inelasticity occurs in the member, the
moment-curvature relationship becomes nonlinear. In such cases the use
of formal mathematics for the solution of the governing differential
equations become intractable and recourse must be had to numerical
methods to obtain solutions. In some cases, however, closed-form
solutions are still possible if one makes drastically simplified assumptions
regarding the stress—strain behavior of the material, cross-secticnal
geometry, and deflection shape of the member. For more general cases,
however, only numerical solutions with recourse to computer routines are
possible. (See, for example, the two-volume work by Chen and
Atsuta.2?)

In this chapter, we will show in detail the elastic soclutions of a simply
supported beam-column under three types of loadings—that of (1)
uniformly distributed, (2) concentrated, and {3) end moments—in order
to demonstrate the solution procedures and general behavior of a typical
beam-column problem. Afterward, we will develop the general governing
differential equation of a beam-column under general loading conditions.
This, in turn, will be followed by the solution of an elastic-plastic
beam-column under equal and opposite end moments. We will then
conclude the chapter with a discussion of design equations, which will be
based on the approaches used by the AISC for beam-columns.

Since the behavior of a beam-column is different depending on whether
there is a relative translation between the member ends, our discussions
of beam-columns will address separately the nonsway versus the sway
case. In addition, we will distinguish between cases in which the
beam-column is treated as an individual member or as a member in a
frame. To take into account the effects of other members on the
beam-column under comsideration in a frame, the concept of effecrive
length factor will be used again. The AISC effective length alignment
charts for nonsway and sway cases will be discussed on the basis of
certain simple assumptions.
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3.2 BEAM-COLUMN WITH UNIFORMLY DISTRIBUTED
LATERAL LOAD

3.2.1 The Closed-Form Solution (Fig. 3.1}

To begin our discussion of the elastic behavior of a beam-column, let us
consider a simply supported beam-column subjected to an axial force P
and uniformly distributed lateral load of intensity w as shown in Fig.
3.1a. A free-body diagram of a segment of the beam-column of length x
from the left support is shown in Fig. 3.1b. The external moment acting
on the cut section, is
w , wkL
M. =Py 5% + X (3.2.1)
If elastic behavior is assumed and if the material obeys Hooke’s Law,
the internal moment M, is related to the bending curvature y” by the
linear relationship

My, =—Ely” (3.2.2)

where the negative sign indicates that the curvature or the rate of change

of slope y" = dy'/dx is decreasing with increasing x as shown in Fig. 3.1b.
For equilibrium, the external moment must be balanced by the internal

moment. Therefore, by equating Eqgs. (3.2.1) and (3.2.2), we have, upon

rearranging,

W, wL

EI —7x (323)

FA

Ely"+ Py =

FIGURE 3.1 Beam-column with uniformly distributed lateral load
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or
W wlL
yu¢2=ﬁﬁf—ﬁ§x (3.2.4)
where
P
k2= E’_I (3.2.5)

The general solution to Eq. (3.2.4) comsists of a complementary
solution y, and a particular solution y,, i.e.,

Y=Yty (3.2.6)

The complementary solution that satisfies the homogeneous differential
equation

Yy +ky=0 (3.2.7)
has the general form
y.=Asin kx + B cos kx (3.2.8)

The particular solution that satisfies Eq. (3.2.4) can be obtained by
either the method of undetermined coefficients or by the method of
variation of parameters. We shall use the method of undetermined
coefficients for this example.

In the method of undetermined coefficients, since the right-hand side
of Eq. (3.2.4) is a polynomial, we assume the particular solution to be a
polynomial with the highest order equal to that of the polynomial in the
right-hand side of Eq. (3.2.4)

yp=Clx2+ QI+C3 (3.2.9)

in which G, G, and C; are the undetermined coefficients.
Taking derivatives of Eq. (3.2.9), we obtain

Ye=20x+C (3.2.10)
yp =20 (3.2.11)

and so
Yo+ k2, =20+ F(Cx* + Gx + Gy) (3.2.12)

Rearranging, we have
Yo+ Ky, = (CkH)x* + (CkMx + (2C, + GkY) (3.2.13)
Upon comparison with Eq. (3.2.4), we can write

2 124
=— 3.2.14
Gk 2EI ( )
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" wkL
= — 3.2.15
Gk 21 ( )
20, + Gk*=0 (3.2.16)
from which
W
- 3.2.17
= 2E ( )
wl
=—— 3.2.1
G 2EIL* ( 8)
2C, W
= =— 3.2.19
G k* EIK* ( )
Hence, the particular solution is
w o, WL w
= - x— 3.2.20
Ye=2En?® T 2ERT T EIK (3.2.20)

Substituting the complementary solution Eq. (3.2.8) and the particular
solution Eq. (3.2.20) into Eq. (3.2.6) gives the general solution to Eq.
(3.2.4) as

W wl w
=Asinkx+ Bcoskx + _x?— — 3.2.21
y=asm cosky+omar — ot T e (322D
from which
L
y' = Ak cos kx — Bk sin kx + — i (3.2.22)

EI" T 2EIK

The constants A and B can be obtained by considering the boundary
conditions

L
y(0) =9, y’(g) =0 (3.2.23)
Using the first boundary condition, we find
w
= 3.2
B EI (3.2.24)
and using the second boundary condition, we have

kL

A=——tan— (3.2.25)

TE
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Thus, Eq. (3.2.21) can be written as

w kL . W
TR [tan—z— sin Jox + cos kx — 1] - W}:(L —x) (3.2.26)
Introducing the notation
L
“ =k7 (3.2.27)

Eq. (3.2.26) can be written as
4 . 2ux 2ux
y =m [tan u sm—L—+ COST_ 1]
wL?
 BENZ

from which the moment distribution along the length of the member is

x(L —x) {3.2.28)

wlL? 2ux 2ux ]
= —Fy = — in 2= i | 3.9
M Ely e [tanu sin I + cos T {3.2.29)

3.2.2 The Calculation of ¥max

The maximum deflection of the member occurs at midspan and is
expressed by

3 (1:) __JVL" [l—cos u:l B wlL?
Ymox =Y\ 5 ) T 16EI* | cosu 32EL°
_ SwL® [12(2 secu —u’— 2)]
T 384EI 5ut
_ D[_12(2 sec;:u'—Z)] (3.2.30)
u

where y,=5wL"/3B4E[ is the maximum lateral defiection that would
exist if the uniform lateral load w were acting alone (i.e., if P were
absent). The effect of the axial force on the maximum deflection is
manifested in the term in the square bracket in Eq. (3.2.30). As seen
from Fig. 3.2, if u =0 (i.e., P=10) the term in the brackets reduces to
unity, and as u increases (i.e., P increases) the value of this term
increases. Finally, at u =m/2 (i.e., P=a’EIl/L? the Euler buckling
load) the value of the term approaches infinity. In other words, as P
approaches the Euler load, the lateral deflection of the member increases
without bound or, to put it in still another way, the bending stifiness of
the member vanishes as P approaches the Euler load. Thus, for an elastic
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DEFLECTION AMPLIFICATION FACTOR
@
T

FIGURE 3.2 Deflection amplification factor

system, the critical load can be obtained by reference to the state at
which the tangent stiffness of the system vanishes. This concept will be
used in the next chapter to determine the critical loads of elastic
frameworks. Let us now return to the beam-column problem. It can
clearly be seen in Fig. 3.2 that the effect of axial force on the lateral
deflection of the member depends on the magnitude of the axial force.
The term in the brackets in Eq. (3.2.30) can be regarded as an
amplification factor, which amplifies the deflection of the member when
an axial force is acting in conjunction with the lateral force. The larger
the value of the axial force, the greater will be the amplification.
Another useful observation can be made from Eq. (3.2.30). For a
constant u (i.e., if P remains unchanged), the lateral deflection y is
directly proportional to the applied lateral load w. In other words, the
deflections (and bending moments) are linear functions with respect to
the lateral applied loads, Thus, the total lateral deflection resulting from
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different load combinations can be obtained simply as the sum of the
deflections resulting from each individual load application with the same
axial load. This is known as the principle of superposition. The principle
of superposition has been used extensively for the special case of beam
problems for which P =0. Here, it shows that this principle holds also for
beam-column problems for which P #0 provided that (1) the axial force in
the general case of the member remains constant, and (2) the same axial
force is applied 1o each of the component cases. We shall use this principle
later in the chapter to evaluate the fixed-end moments of beam-columns
(Section 3.5).

Although the lateral deflection is directly proportional to the applied
lateral load for a constant axial force, this deflection varies nonlinearly
with the axial force. This is true even if the lateral load remains
unchanged. Also, the proportionality between lateral deflection and
lateral load will be destroyed if the axial force varies during the
application of the lateral load.

For the purpose of design application, it is more convenient to simplify
the expression of Eq. (3.2.30). Expanding sec « in a power series,

1, 5 , 61 . 271
secu=1l4+-uw+—u"+—u"+—

8 . v ®
2t T taoet T (3.2.31)

and substituting this series into Eq. (3.2.30), we obtain

Ynax = Ya[1 + 0.4067u* + 0.1649u* + - - -] (3.2.32)

_KL_ L /ﬁ_f\/f
u—2—2 EI_2 P (3.2.33)

Equation (3.2.32) can be written as

Since

P Py\?
Yemax = Yo[1 + 1.003(;) + 1.004(3) +oee ] (3.2.34)

or, approximately

P P\* 1
Ymax '"yu[l + (E) + (F) + - ] =Y "—'—P (3235)

“ 1-(3)

in which the term in the square brackets is the design amplification factor
for the lateral deflection. Table 3.1 shows a comparison of the theoretical
amplification factor [the term in brackets in Eq. (3.2.30)] and the design
amplification factor [the term in brackets in Eq. (3.2.35)]. As can be
seen, for small values of P/P., which is generally the case for the
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Table 3.1 Theoretical and Design Deflection
Amplification Factars for a Uniformly Loaded Beam-

Column
u= kL _a \/E Theoretical Design
2 21NP Eg. (3.2.30)  Eg. (3.2.35)

0 1.000 1.000
0.20 1.016 1.016
0.40 1.070 1.069
0.60 1.173 1.171
0.80 1.354 1,350
1.00 1.690 1.681
1.20 2.400 2.402
1.40 4.822 4.863
JT/Z o w

axial-load conditions in most beam-columns in real structures, the two
expressions give very comparable results.

3.2.3 The Calculation of M,

In addition to knowing the maximum deflection, it is also important for
an engineer or designer to know the maximum moment in the beam-
column. For a uniformly loaded beam-column, the maximum moment
occurs at midspan. Therefore, from the moment expression Eq. (3.2.29),
the maximum moment is

2
M .= M(g) = ::% [secu —1]
_wlL? [2(sec uw— 1)]
~ 8 u?
2(secu —1
- Mu[—_"( = )] (3.2.36)

where M, = wL?/8 is the maximum moment that would exist if the lateral
load w were acting alone (i.e., if P were absent). The term in the square
brackets thus represents the moment amplification factor, which magnifies
the primary moment in the member due to the presence of an axial force.
Note that another way the maximum moment can be obtained is by
realizing that M,,,, consists of two components: the primary moment M,
caused by the lateral load w and the secondary moment caused by the
axial load P acting through the maximum lateral deflection y,;, i.e.,

anx = MO + Pymux (3237)
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Using the expression for ym.. [Eq. (3.2.30)] in Eq. (3.2.37), it can
easily be shown that Eq. (3.2.36) is obtainable.

For the purpose of design application, we shall again simplify Eq.
(3.2.36) by using the power series expansion for secu [Eq. (3.2.31)j in
Eq. (3.2.36).

M, = My[1+ 0.4167u® + 0.1694u* + 0.06870u° + - - -] (3.2.38)
Using the expression for u in Eq. (3.2.33), it can be shown that

P P 2
e = M| 1+ 1.02 (—)+ . (—)
M 0[1 028 & 1031\ 5

+ 1.032(%)3 - } (3.2.39)
T e () aou(2)
+ 1.004(%)1 . ]} (3.2.40)

or, approximately

iRy

1
M”[l —P/Pj (3.2.41)
where the term in the square brackets is the design moment amplification
factor. Table 3.2 shows a comparison of the theoretical moment
amplification factor {the term in brackets in Eq. {3.2.36)] with the design
moment amplification factor [the term in brackets in Eq. (3.2.41)]. It can
be seen that the two expressions give very comparable results.

3.3 BEAM-COLUMN WITH A CONCENTRATED LATERAL LOAD

3.3.1 The Closed-Form Solution (Fig. 3.3)

Figure 3.3a shows a simply supported beam-column acted on by a
concentrated lateral load Q at a distance a from the left end and an axial
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Table 3.2 Theoretical and Design Moment
Amplification Factors for a Uniformly Loaded Beam-

Column
. kL _z \/—E Theoretical Design
2 "2 VB Eq (3.2.36) Eq. (3.2.41)

0 1.000 1.000

0.20 1.017 1.016

0.40 1.071 1.069

0.60 1.176 i.171

0.80 1.360 1.350

1.00 1.702 1.681 !
1.20 2.444 2.402 i
1.40 4.983 4.863 j
a2 = =

force P. Referring to the free-body diagram in Fig. 3.3b, the differential
equations for this beam-column can be written as

—Ely"= g(%_flx +Py for O<x=a (3.3.1a)
IL—x
—Ely"= Qa( ) +Py for gasx<L (3.3.1b)

FIGURE 3.3 Beam-column with a concentrated lateral load

Q
| a o
l..“..v_,,_,
F w P X
| L |
1' EI=-CONSTANT \
Y
(a}
M |
P ——— 1
M P —rY
QL — a}

(b}
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Rearranging and using the expression k* = P/EI, we obtain

— L -
¥+ k> =%2x for 0sx<a (3.3.2a)
L_
YKy = _@_ﬁFx) for a<x<L (3.3.2b)
The general solutions are
L_
y =Asinkx + B cos kx —%x for O<x=a (3.3.3a)
L—
y=Csinkx+ D cos kx —%ﬂ for asx=<L (3.3.3b)
from which
I -
y'= Ak cos kx — Bk sin kx _%Ik_f) for O0<x=g (3.3.4a)
Qa

y' = Ck cos kx — Dk sin kx + for asx=<L (3.3.4b)

LEIK*

Using the boundary conditions that there are no lateral displacements
at the supports

y(0) in Eq. (3.3.3a) =0 (3.3.5)
y(L) inEq. (3.3.3b)=0 (3.3.6)

and the continuity conditions that displacement y and slope y' must be
continuous at the point of load application O

y(a) in Eq. (3.3.3a) = y(a) in Eq. (3.3.3b) 3.3.7)
y'(a) in Eq. (3.3.4a) =y'(a) in Eq. (3.3.4b) (3.3.8)
the four constants 4, B, C, and D can be determined as
_Qsink(L —a)
~ EIKsinkL (3-3.9)
B=0 (3.3.10)
_ —Qsinka
" EI% tan kL (3-3.11)
O sin ka
== 9
D==_"3 (3.3.12)

Substituting these constants into the deflection functions Egs. (3.3.3a)
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and (3.3.3b) gives

SLED s for 0s<x<a (3.3.132)
y=- _—_Eﬁc:itZ:zL sin kx + Q ;}if el cos kx
_ Qi(;;) for a<x<lL (3.3.13b)
from which
y'= Eiz Sin;icl(liz a) cos kx — % for O=x=g (3.3.14a)
y' =%ccskx - Q;;‘:{.fa sin kx
+ Lg;kz for asx=<L (3.3.14b)
and
y = E%c Singr(ll,v;; 2) sinkx for 0<x=g (3.3.15a)
"=%sinkx - Q;?kka coskx for asx=<L (3.3.15b)

3.3.2 The Calculation of M,,., and ¥,..

Consider now the special case in which the concentrated lateral load Q
acts at midspan. By setting a = L/2 and x = L/2 in Eq. (3.3.13a or b) and
Eq. (3.3.15a or b), we obtain the maximum deflection and maximum
moment, respectively, as

_ oL} [3(tan = u)] _ [3(tan u— u)]
ymu = 48EI 113 —yo u3 (3.3.16)
L t
M. =Q_ [tan u] _ Mo[ an u] (3.3.17)
4 u u

in which u =kL/2, y, and M, are, respectively, the maximum deflection
and moment that would exist if the axial force P were absent. The terms
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in brackets in Eqs. (3.3.16) and (3.3.17) are thus the theoretical deflection
and moment amplification factors.

To simplify the expressions for the maximum defiection equation
(3.3.16) and the maximum moment equation (3.3.17), we use the power
series expansion for tan u

1 2 17
t =u+cwl -t —u"+- 3.
an u u+3u +lsu +315u+ (3.3.18)

Upon substituting Eq. (3.3.18) into Egs. (3.3.16) and (3.3.17) and
simplifving, it can be shown that these equations can be written
approximately as

Yomax = Yo — (3.3.19)
G
e | (SO 5

in which the terms in brackets in the above equations are the design
defiection and moment amplification factors, 1espectively.

Tables 3.3 and 3.4 show a numerical comparison of the theoretical and
design deflection and moment amplification factors, respectively. Good
correlation between the theoretical and design amplification factors are
abserved.

At this point, the reader should recognize the similarity in form of the
deflection amplification factors in Egs. (3.2.35) and (3.3.19) and the

Table 3.3 Theoretical and Design Deflection
Amplification Factor for a Beam-Column with a
Concentrated Lateral Load at Midspan

kL _=x \/E Theoretical Design
2 - 2VP  Eq.(3.316) Eq.(3.3.19)
0 [.000 1.000
0.20 1.016 1.016
0.40 1.068 1.06%9
0.60 1.169 11
0.80 1.346 1.350
1.00 1.672 1.681
1.20 2.382 2,402
1.40 4.808 4.863

xf = =
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Table 3.4 Theoretical and Design Moment
Amplification Factors for a Beam-Column with a
Cancentrated Lateral Load at Midspan

v kL & \/E Theoretical Design

2 -2 VE  Eq.(33.17) Eqg. (3.3.20)
0 1.000 1.000
0.20 1.014 1.013
0.40 1.057 1.055
0.60 1.140 1.137
0.80 1.287 1.280
1.00 1.557 1.545
1.20 2.143 2.122
1.40 4141 4.090
nf2 w @

similarity in form of the moment amplification factors in Eqgs. (3.2.41)
and (3.3.20) for the simply supported beam-column under uniformly
distributed and midspan concentrated lateral loads. We shall take
advantage of these similarities in developing design formulas for beam-
columns. This will be discussed later.

3.4 BEAM-COLUMNS SUBJECTED TO END MOMENTS

3.4.1 The Closed-Form Solution (Fig. 3.4)

So far, we have considered only the cases in which the primary bending
moments in the beam-columns are caused by in-span lateral loads. In this
section, we shall consider the case in which the primary bending moment
is caused by end moments in the beam-column. Shown in Fig. 3.4a is a
beam-column acted on by end couples M, and Mg at the left and right
ends of the member, respectively, and acted on by an axial force P.
Using the free-body diagram of a segment of beam-column of length x
from the left end (Fig. 3.4b), the external moment acting on the cut
section is

— x

Equating this to the internal moment of —E[y” and rearranging, we
have

Mcxl=MA+Py - (341)

M
=TA By M, (3.4.2)
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FIGURE 3.4 Beam-column with end couples {double-curvature bending)

or, using k*= P/EI, we can write

Ma+ M, M
Yy === -2 (3.4.3)
The peneral solution is
. My + My M,
= k; X — 4.
y=Asinkx + B cos kx + LEIE T EIe (3.4.4)

The constants A and B can be evaluated by using the boundary
conditions

y(0)=0, y{L)=0 (3.4.5)
From the first boundary condition, we obtain
Ma
=— 3.4,

B Eli* (3.4.6)

and from the second boundary condition, we obtain

1

= (M4 cos kL + My) (3.4.M

© EIRsinkL
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Therefore, Eq. (3.4.4) can now be written as

_ (MjcoskL+ Mg) | M,
Y= T EnesnkL M T ppacos i
- 3.4.8
LEIKZ * EIZ (3.4.8)
from which
(Mp cos kL + Mg) M, . My + My
‘= — kx - —2sinkx +—2 P (34,
Y ElksinkL, 0 BT LEnE 49
and
(M, cos kL + Mg) . My
"= kx ——= kx 4.
ElsinkL " R (3.4.10)
and .
k(M, cos kL + Mg) kM, |
" +==A 4.
FlsinkL cos kx Bl in kx (3.4.11)

To determine the location of the maximum moment, we set the shear
force (—Ely™), or Eq. (3.4.11), equal to zero. In doing so, we obtain the
location ¥

. —(MacoskL + M)

tan k£ = 3.4.

an M, sinkL (3.4.12)
From Fig. 3.5, it can be seen that
- (M, cos kL + Mp)
ki = - 3.4.13
S = ME 1 2Ma My cos kL + M5, (34.13)
_ —M, sin kL

kx= 4.

€08 X = N ME, + 2M My cos kL + M3 (3.4.14)

FIGURE 3.5 Trigonometric relationship

!\IM:+ 2 MM cos kL + M3

Macos kL + Mp

= Masin kL
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(Note: For O0=ski<skL =nVP/P,<m, we have sink¥ =0 and cos ki <
0)

The maximum moment is obtained by using the above expressions for
sin k% and cos kX in the expression M = —Ely" where y” is given in Eq.
(3.4.10). Thus

Mo = —(M, cos kL + Mp)*
™R sin kKLVME 4 2M Mg cos kL + M3
_ M3 sin kL
VME + 2M My cos kL + M%
_ VML +2MaMpcos kL + M3
- sin kL
2z
_ —Ma[ (Ma/Mg)* + ZSET:AklfB) cos kL + 1] (3.4.15)

The minus sign that appears in Eq. (3.4.15) simply indicates that M,
causes tension on the top fiber of the cross section.

If Mg is the larger of the two end moments, then the terms in the
brackets in Eq. (3.4.15) represent the moment amplification factor for
the beam-column subjected to end moments M,, My and an axial force
P. Note that this amplification factor depends not only on the magnitude
of the axial force, but also on the magnitude of the ratio of the end
moments.

For members bent in double curveture, sometimes the maximum
moment occurs at the end and is therefore equal to Mg, as shown in Fig.
3.6. If this is the case, the amplification factor in Eq. (3.4.15) becomes
meaningless because this theoretical maximum moment occurs outside
the length of the beam-column. To check whether Eq. (3.4.15) is
applicable then for a given value of M, Mg, and P, one should also
evaluate ¥ from Eq. (3.4.12). If the calculated value of % does not fall
within the range 0=¥=/[, Eq. (3.4.13) is not applicable and the
maximum moment occurs at the end and is equal to the larger of the two
end moments (see Problem 3.6).

It should also be mentioned that in the development of Eq. (3.4.15)
only member overall stability is considered. Failure due to lateral
torsional buckling or buckling due to unwinding from double to single
curvature is not considered. The phenomenon of lateral torsional
buckling is the subject of discussion in Chapter 5. The phenomenon of
buckling due to unwinding from double to single curvature is beyond the
scope of this book, but is discussed in detail by Ketter.* Generally
speaking, this type of buckling will occur if the ratio M,/My lies in the
range 0.5 to 1.0. As a result, Eq. (3.4.15) is not applicable if M,/My is
between 0.5 and 1.0.
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FIGURE 3.6 M... equals My at member end

Although Eq. (3.4.15) has been developed for a member bent in
double curvature, the same expression can also be used for a member
bent in single curvature (Fig. 3.7) simply by replacing My by —M,. Thus,
for members bent in single curvature, the expression for maximum
moment is

(MAo/Mp)? —2(M,/Mp) cos kL +1
Mmux = MB )
sin“ kL

} (3.4.16)

Here, just as in the case of members bent in double curvature, the
maximum moment for a certain combination of M,, My, and P, of a
beam-column bent in single curvature may occur at the member end
rather than within the members (Fig. 3.8). Thus, to check the validity of
Eq. (3.4.16), one should evaluate ¥ from the equation

—(M, coskl. — M)
M, sin kL
If the calculated value of ¥ falls outside the range O0<<i<L, the

maximum moment occurs at the member end. Note that Eq. (3.4.17) is
the same as Eq. (3.4.12), except that My has been replaced by —Mj.

tan k% =

(3.4.17)

-
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FIGURE 3.7 Beam-column with end couples (single-curvature bending)

FIGURE 3.8 M, equals My at member end
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Equations (3.4.15) and (3.4.16} can be written in a combined form as

M Mg) + 2(Ma/Mg) cos KL+ 1
JOTRF TR

where M, /Mg is positive if the member is bent on double curvature and is
negative if it is bent in single curvature. The absolute value for My is used
in the coefficient of Eq. (3.4.18) because we are interested only in the
magnitude, not the direction of M_,,.

A special case for a beam column bent in single curvature is the case in
which the end moments are equal and opposite, i.e., if M, =—-Mg=M,
as shown in Fig. 3.9. For this case the maximum moment is given by
substituting M./Mp =—1 in Eq. (3.4.18)

2(1 —cos kL
M= M+ T kL ) (3.4.19)

and its [ocation is always at midspan as depicted in the figure.

Mma.t = IMB||:

FIGURE 3.9 Beam-column with equal and opposite end couples
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3.4.2 Concept of Equivalent Moment

Equation (3.4.18) is the expression for the maximum moment for the
general case of a beam-column subjected to unequal end moments. The
maximum moment may occur at a member’s end, and be equal to the
larger of the two end moments, or it may occur somewhere within the
member whose magnitude is given by Eq. (3.4.18) and whose location is
determined by Eq. (3.4.12) or Eq. (3.4.17). For the purpose of design,
one needs to know whether the maximum moment occurs at the end or
away from the ends, and also the location of the maximum moment if it
should occur away from the ends. To eliminate these calculations, the
concept of equivalent moment is introduced in design practice.

The concept of equivalent moment is shown schematically in Fig. 3.10.
The end moments M, and Mgy that act on the member are replaced by a
pair of equal and opposite equivalent moment M. . The magnitude of the
equivalent moment is such that the maximum moment produced by it will
be equal to that produced by the actual end moments M, and Mp.
Mathematically, one can obtain the equivalent moment by setting
M =M, in Eq. (3.4.19) and equate this to the M in Eq. (3.4.18).

o [ \/(MAIMB)l F2(MaMz) cos kL + 1]

sin® kL
_ 2(1—cos kL)]
= Meq[‘/—sinz L (3.4.20)

from which we solve for

_ (Ma/Mpy + 2(Ma/Mg)cos kL + 1]
Meq = [ 2(1 —cos kL) M)

= Cm IMB| (3421)

in which C, is the equivalent moment factor.

FIGURE 3.10 Schematic representation of the concept of equivalent moment
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FIGURE 3.11 Comparison of various expressions for C,

As can be seen from Eq. (3.4.21), the equivalent moment factor &, is
a function of the moment ratio M,/Mp and the axial force P. Simplified
expressions for G, that eliminate its dependency on the axial force have
been proposed by Massonnet® and Austin.® The Massonnet expression is

Co = V0.3(Ma/Mp)* — 0.4(Ma/Mg) + 0.3 (3.4.22)
and the Austin expression is
Crn=0.6—0.4(Ms/Mp)=04 (3.4.23)

The various expressions for C, are plotted in Fig. 3.11. As can be seen,
the simplified expressions give a rather good approximation to the
theoretical one. Because of its simplicity, the Austin expression was
adopted in the AISC/ASD,” and LRFD*® Specifications for the design of
steel structures. Note that in Fig. 3.11 the curves for the theoretical C,
each for a given value of p = P/P,, terminates when the larger of the two
end moments (i.e., Mp) represents the maximum moment of the
member.

3.4.3 The Calculation of M_,,,

For a beam-column subjected to end moments only, the following steps
are thus taken to evaluate M., for design.

1. Evaluate G, from Eq. (3.4.23).
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2. Calculate the equivalent moment by multiplying the C,, factor by the
larger of the two end moments (Eq. 3.4.21).
3. Calculate the maximum moment from Eq. (3.4.19) with M = M.

Equation (3.4.19) can be further simplified as follows. Using the
trigonometric identities

kL
1 — cos kL = 2 sin* > (3.4.24)
and
kL kL
sin® kL = 4 sin® — cos® — (3.4.25)
2 2
Eq. (3.4.19) can be written as
kL 1
Miax = M. sec -5 =M.q — > (3.4.26)
1 —_—
P

c

and since M., = Cp Mg, the maximum moment can now be computed by
the simple formula
Co
Mmux = —F MB =A1':MB (3.4.27)
g
In summary, to obtain the maximum moment for a nonsway beam-
column subjected to end moments only, one need only multiply the
larger of the two end moments by a factor A = C,,/[1 — [(P/F.)]. For Eq.
(3.4.27) to have physical meaning, the moment magnification factor must
be greater than or equal to unity, otherwise, the larger end moment My
will be taken as M,,... This fact is observed in the LRFD Specification,®
but not in the ASD Specification.’

3.5 SUPERPOSITION OF SOLUTIONS
3.5.1 Simply Supported Beam-Column (Fig. 3.12)

As mentioned previously, the principle of superposition holds for
beam-columns so long as the axial force remains constant and the same
axial force is applied to each component of the sclution. To demonstrate
the use of this principle, we will analyze the beam-column shown in Fig.
3.12a. This simply supported beam-column is subjected to a uniformly
distributed lateral load of w and a concentrated lateral load of Q at
midspan. A constant axial force P is also applied to the member. The
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FIGURE 3.12 Beam-column loaded by uniformly disiributed and concentrated
lateral loads

deflected shape of this beam-column can be obtained by superposing the
deflected shapes of Fig. 3.12b and c, i.e.,

y = Eq. (3.2.26) + Eq- (3.3.]33) |{l:‘L-’2
w kL .
=EI [tan751nkx+coskx - 1]

Q . _( ) N
£ 2 \simir) S T 2Em”
1 [( kL Ok kL).

=W wtan7+—2—sec?

1 2
+ w cos kx +£wk2,rz— (%+%k2)x-—w} (3.5.1)

To obtain the maximum moment, we set the shear force (or —Ely™)
equal to zero (where a prime denotes derivative with respect to x) to
obtain the location ¥ and then backsubstitute the value % that we
obtained this way into the expression M = —EIly". However, for this
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example there is a simpler approach. Knowing that the maximum
moment occurs at midspan for both the uniformly [oaded case (Fig.
3.12b) and the concentrated loaded case (Fig. 3.12c), we can just add the
maximum moment for these two cases together to obtain the maximum
moment of the combined loading case (Fig. 3.12a). Thus

Mo = Eq. (3.2.36) + Eq. (3.3.17)
_ wL? [_2(530 u— 1)] +% [tan u:l

8 u? 4 u

(3.5.2)

3.5.2 Fixed-Ended Beam-Columns

Another application of the principle of superposition is to determine the
fixed-end moments of a beam-column.

Uniferm Load Case (Fig. 3.13)

We will now consider a beam-column fixed at both ends and loaded by a
uniformly distributed lateral [oad w and an axial force P (Fig. 3.13a). We

FIGURE .13 Fixed-end moments of a uniformly loaded beam-column
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will determine the fixed-end moments (Mg, , Mp) of this member using
the principle of superposition. The beam-column in Fig. 3.13a can be
decomposed into that of Fig. 3.13b and Fig. 3.13c. To satisfy the
continuity condition of zero slopes at the built-in ends, the algebraic sum
of the rotation at the ends produced by the uniform load w (Fig. 3.13b)
and that produced by the end moments (Fig. 3.13c) must be zero.
Because of symmetry, we need only consider half of the member. By
taking the derivative of Eq. (3.2.28) and evaluating the resulting equation
at x =0, we abtain the A end rotation produced by the uniform load w as

wl? [S(tan u—u)}
24E] 3
and from Eq. (3.4.9), by setting M, =Mpa, Mp= Mpp=—Mr, and

x =0, we obtain the A end rotation produced by the end moments Mg,
and Mgy as

yul(0) = (3.5.3)

U

SOl 639
Using the trigonometric identities of
1—coskL =2sin*kL/2,
we can write Eg. (3.5.4) with
kL
2
as
ym(©) =y§f—“ [ta—zﬁ] (3.5.5)

Since the continuity condition at the fixed-end requires that
yu(0) + ym(0) =0 (3.5.6)

the substitution of Egs. (3.5.3) and (3.5.5) into Eq. (3.5.6) gives the
fixed-end moment

wl?

MFA="ﬁ[

3(tan u — u)]
12

3 3.5.7
y”tan i ( )

The minus sign in Eq. (3.5.7) indicates that the direction of Mg, is
opposite to that shown in Fig. 3.13. Note that the term wlL?*/12 is the
fixed-end moment for a member subjected to uniformly distributed load
only. Thus, the terms in the brackets represent the effect of axial force on
the fixed-end moment of the member.
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Concentrated Load Case (Fig. 3.14)

The same procedure can be used to evaluate the fixed-end moment of a
beam-column subjected to a concentrated lateral load Q acting at
midspan of the member (Fig. 3.14a).

Apain, because of symmetry, we only need consider half of the
member. From Eg. (3.3.14a), by setting a = L/2, we obtain the A end
rotation due to the lateral load  as

sin k—L
,_ Q"2 g
vaO) =gy okt " 2EIR
QL?
= RELE [secu —1] (3.5.8)

where u = kL/2.
The end rotation at the A end due to the end moments Mg,

FIGURE 3.14 Fixed-end moments of a beam-column with a concentrated
transverse load at midspan
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and Myg = — M, is obtained from Eq. (3.5.5)

Mg, L [tan u}

o (3.5.5)

I (0) =
yu(0) u

Since the slope at the fixed-end must be zero, we must satisfy the
condition

ya(0) + ym(0) =0 (3.5.9)

Upon substituting Eqgs. (3.5.8) and (3.5.5) into (3.5.9), we can
determine the fixed-end moment as

—QL [Z(SBC u— 1)} _ —QL [2(1 —Cos u)

3 I tan u 8 It 51N i

The minus sign indicates that the direction of Mg, is opposite to that
shown in Fig. 3.14. The term (L/8 that appeared in Eq. (3.5.10)
represents the fixed-end moment of the member when P is absent. The
terms in the brackets thus represent the effect of axial force on the
fixed-end moment of the member.

Mo = } (3.5.10)

3.6 BASIC DIFFERENTIAL EQUATIONS

Up to this point, we have derived the differential equation of the
beam-column by considering moment equilibrium of a segment of the
member cut at a distance x from the left support for a given beam-column
problem. The resulting linear differential equation has been second-
order. In this section, we will develop the basic differential equations of a
beam-column subjected to general lateral loadings.

As seen in Fig. 3.15a, an initially straight beam-column is subjected to
an axial force F and a lateral load w(x) along its entire span. To examine
the stability of the member, we have to consider the equilibrium state in
the deflected configuration. Figure 3.15b shows an infinitesimal element
of the deflected member of projected length dx. The longitudinal force P
and transverse force V are shown with their directions parallel and
normal to the undeflected axis of the member, respectively. Summing
forces horizontally, we have

dP
PP+ dr)=0
or dP
dx

Summing forces vertically, we have

0 (3.6.1)

V—(V+%/a’x)~w(x)dx=0
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RS
y INITIAL DEFLECTED
CONFIGURATION GONFIGURATION

(a)

{b}

FIGURE 3.15 General differential equation of a beam-column

or
dv
dx

Summing moments about peint 0, we have

dM
—M + (M +

dx
dP dy
(P + I dx) i dx —w(x)dx

=—w(x) (3.6.2)

v
dx) - (V+de) dx
dx

7 =0

or
L
dx
_dPdy

o (xR = ()

dv . _dy
dx —Vdx i (dx) ded.r
(dx)”

0
2
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or, neglecting the higher order terms inveolving (dx)? we obtain

dM dy dM dy
dx_V de—O or — =V+ de (3.6.3)
Equation (3.6.1) states that there is no change in longitudinal force in
the segment. That is to say, the force P remains constant in the element.
Equation (3.6.2) states that the rate of change in transverse force across
the segment is equal numerically to the magnitude of the applied
transverse load w(x), which is assumed to be constant along the
infinitesimal length 4r. Equation (3.6.3) states that the rate of change in
moment across the segment is equal numerically to the transverse force V
plus the longitudinal force P times the change in slope dy/dx of the
infinitesimal element.
For small deflection, we can write M = —EI d*y/dx*. Upon substitu-
tion into Eq. (3.6.3) and rearranging, we obtain

d’y dy _
or using k*= P/EI P p v
ErX oL (3.6.5)

dr? dr  EI

If we differentiate Eq. (3.6.4) with respect to x and substitute Eq.
{3.6.2) into the resulting equation, we have

d'y d%
B+ P P—— w(x) (3.6.6)
or with k2= P/EI
d'y dly _wlx)

+k*—

dr’ de*  El

Equation (3.6.5) is the basic differential equation of a beam-column

relating the lateral deflection y, the axial thrust P, and the transverse
force V. The general solution to this equation is

y=Asinkx+Bcoskx+C+f(x) (3.6.8)

where f(x) is the particular solution of the differential equation. Equation
(3.6.7) is the basic differential equation of a beam-column relating the
lateral deflection y, the axial thrust P, and the transverse loading w(x).
The general solution to this equation is

y=Asinkx + Bcoskx + Cx + D + f(x) (3.6.9)

where f(x) is the particular solution of the differential equation. The
following examples will be used to demonstrate the use of Egs. (3.6.5)
and (3.6.7).

(3.6.7)
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3.6.1 Fixed-Fixed Beam-Coiumn with Concentrated Load
at Midspan

The beam-column under investigation is shown in Fig. 3.16. Because of
symmetry, only half of the member is considered in the analysis. Since
the transverse force acting on any cut section is constant and is equal to
/2, we have, from Eqg. (3.6.3),

Sy .d :
Yo 2 (3.6.10)

d* " dx 2El
From Eg. (3.6.8), the general solution is
. Q
= hx — .6.
y=Asinkx+Bcoskx+C SEIC: (3.6.11)

The constants 4, B, and C are determined from the boundary
conditions

y0)=0, y'(®=0, y(%) =0 (3.6.12}

FIGURE 3.16 M., of 2 beam-column with a concentrated transverse load at
midspan
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Using these boundary conditions, we find

o

A= TEIR (3.6.13)
B=L (cos%— 1) (3.6.14)

2EHS sin—

sin 2
kL

C= —-—Q P’ (1 — Cos 7) (3.6.15)

2EIL? sin >

With these constants, the deflection function (3.6.11) is fully determined

1—-cos—
_Q ( kL ) cos kx ( 2 )
yHZEIk3 sin kx + cos2 1 : k_L+ i kx

sin— sin—

(3.6.16)
The deflection at midspan is

L oL’ [12(2—2cosu— u sin u)]
== 3.6.17
y(z) 192E1 u sin (3.617)

where u=kL/2

The term QL*/192E1, which appeared in Eq. (3.6.17), represents the
midspan deflection when the axial force is not present. Thus, the terms in
the brackets represent the effect of axial force on the primary deflection
of the member.

The maximum moment for this beam-column occurs at midspan and at
the ends (see Fig. 3.16b) and is equal to

-QL [2(1 — cos u)]
8 i Sin u
Note the correspondence of Eq. (3.6.18) with Eq. (3.5.10).
For the purpose of design, it is more convenient to approximate Eq.
(3.6.18) in the format of Eqs. (3.2.41) and (3.3.20), i.e.,
Lt H(PIF]
1- (P/Pr:k)

M= —Ely"(0) = (3.6.18)

Mm;l.x= MU|: (3619)

in which

M, = maximum primary moment (maximum moment when the axial
force is absent)

F., =critical load of the beam-column considering the end conditions
when the lateral force is absent

Y = constant
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Table 3.5 Theoretical and Design Moment
Amptlification Factors for a Fixed-Ended
Beam-Column Loaded by a Concentrated Lateral
Load at Midspan

yEL_ = [P Theoretical Design
P

1 2K Eq. (3.6.18) Eq. (3.6.19)
0 1.000 1.000
0.20 1.003 1.003
0.40 1.014 1.013
0.60 1.031 1.030
0.80 1.037 1.055
1.00 1.093 1.090
1.20 1.140 1.137
1.40 1.203 1.198

T =] -]

For the present case, My= QL/8, P.,=x°El/(KL)* in which K =0.5.
The value of W can be determined by equating Eq. {3.6.18) to (3.6.19),
and solving for ¥

Y= |

k. L [P = [P
H=—=— _—=— —_—
2 2 NEI 2K VP,
It can be shown that the value of ¥ does not vary too much for various

values of P/P.,. As shown in Table 3.5, for ¥ = —0.2, Eq. (3.6.19) gives
a good approximation to Eq. (3.6.18).

2(cos u —
1 sin u

1)( [1-(P/P.)] - 1} (3.6.20)

in which

3.6.2 Fixed-Fixed Beam-Column with Uniformly Distributed Loads
The differential equation for this case is from Eq. (3.6.7)

d’y kzd_zy_ w

e il El (3.6.21)
From Eq. (3.6.9), the general solution is
y=Asinkx+Bcoskx+Cx+D +— (3.6.22)

2EIA2 x*

The constants A, B, C, and D are determined from the boundary
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conditions
y®=0, »'©=0, pL)=0, y(L)=0 (3.6.23)

or, alternatively, by making use of the condition of symmetry, the four
boundary conditions are

y0)=0, y'(©=0, y’(§)=0, y”’(%)=0 (3.6.24)

Using either set of these four conditions, we find

wL
A=—— 3.6.25
2EIK? ( )
B= L}{L (3.6.26)
2EIK® tan—
2
wL
=—— 3.6.27
¢ 2EIk ( )
L
D=—— = (3.6.28)
. kL
2ETE tan—
2
With these constants, Eq. (3.6.22) can be written as
wi cos kx 1 kx*
=——— | sinkx+ —kx — — 6.
Y =sgne | sinkx L kL+ 7 (3.6.29)
tan-— tan —
2 2
The deflection at midspan is
L wlL? 12(2—2cosu—usinu):|
—|= 3.6.3
y(z) 384EI [ 1 sin (3.6.30)

Again, the term wL*/384EI represents the lateral deflection when the
axial force P is absent, and the terms in square brackets represent the
effect of axial thrust on the lateral deflection.

The maximum moment for this beam-column occurs at the fixed-end
and is equal to

Mo = —EIy"(0) =

—wl? [3(tan u— u)] (3.6.31)

12 u? tan u

The reader should note the correspondence of Eq. (3.6.31) with Eq.
(3.5.7). Again, for the purpose of design, it is more convenient to
approximate Eq. (3.6.31) in the format of Eq. (3.6.19). With reference to
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Table 3.6 Theoretical and Design Moment
Amplification Factors for a Fixed-Ended
Beam-Column Loaded by a Uniformly Distributed
Lateral Load

= kL __% [P Theoretical Design
2 2K Yp, Eq.(3.631) Eg. (3.6.19)

0 0 0

0.20 1.003 1002
0.40 1.011 1.010
0.60 1.025 1.023
0.80 1.045 1,042
1.00 1.074 1.068
1.20 1.111 1.102
1.40 1.161 1.149

4 = =

Eq. (3.6.19), M, is now wL?/12, P, =x*EI/(KL)* where K =0.5. The
value of W is

b3

1 { 3(tanu —u)
(PP witanu

Again, the value of ¥ does not vary too much for various values of
P/P.,. By choosing a W-value equal to —0.4, we will observe a good
correlation between the theoretical M, as expressed in Eq. (3.6.31) and
the approximate M,,,, as expressed in Eq. (3.6.19) (Table 3.6).

[1-(P/P4)] - 1} (3.6.32)

3.7 SLOPE-DEFLECTION EQUATIONS

In this section, we will develop the slope-deflection equations for a
beam-column. Consider the beam-column shown in Fig. 3.17; we now
want to establish a relationship between the end moments (M,, Mg) and
the end rotations (84, fg).

From Eq. (3.4.8), the deflection function for this beam-column has the

FIGURE 3.17 Beam-column subjected to end moments {without relative joint
translation)
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form
(M, cos kL + MB)
EIk*sin kL
M, + Mg r M,
LEIK® Elk?

I\_x+MA

Eik cos kx

y:

(3.7.1)

Rearranging, we have

1 [cos kL

FIiC | sin kL sin kx — cos kx _Z+ I]M

y=——07

1 X
- in o — = | M, 1.2
ETk? [sin %L Snkx L] B (3.7.2)

from which

1 [coskL 1]
= kx +sin kx ——
Y= TEIk [sin L COS Kx Fsin ke — o | M

1 [coskx 1

“EIk [—sin kL_E}MB (3.7.3)

Using Eq. (3.7.3), the end rotations 8, and 6y can be obtained as

1 [coskL 1 ]
y'(0)= T Elk [sin kL kL
1 1 1
TEk [—sm 53 _k_L]MB

[sm kL — kL cos kL]
TEILT (kL)¥sinkL A
L [sinkL —kL]
ErL(kL)?sin kL
\ _ 1 1
9=y ()= ~pp [sm kL kL:|M

1 [coskL 1J

(3.7.4)

Elk
sin kL — kL
T El [(kL)2 sin kL]
L+ L [sin kL —kLcos kL
EI (kL)?sin kL

sinkL kL

]MB (3.7.5)
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Equations (3.7.4) and (3.7.5) can be written in matrix form as

9.«\] [fu fl‘l:H:MA:I
= 3.7.6
[BB b Fadl Mg ( )
where
_L sin kL — kL cos kL]
h=f2=g ( (kLY sin kL 377
L sinklL — kL
o=t =gy [@L)gsin kL} (3.7.8)
From Eq. (3.7.6), we can write
MA] [fu fll]dl[BA]
= 3.7.9
[MB fi f2 7 ( )
or
MA} [Cn 612][ BA:I
= 3.7.10
[MB €z Cpil@p ( )
where
_ _EIkLsin kL — (kL)* cos kL]
cu=m=7y [2—2coskL-—kLsinkL (3.7.11)
= o =£I[ (KL)”~ kL sin kL ] (3.7.12)
L L2—2cosklL — kL smkL
Equation (3.7.10) can be written in its expanded form as
El
MA=_E(Sii8A+SEJBH) (3.7.13)
EI
MB=1_(Sji8A+SjjBB) (3.714’)
where
_ _ C“L _ szL
55 =85 = = EL (3.7.15)
C;gL Ca L
S =53 ="gp =——El 7 (3.7.16)

are referred to as the stability functions.
Equations (3.7.13) and (3.7.14) are the slope-deflection equations for a
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compression tension
kL P/Pc 55 8ij & 55
0. 0. 4. Q000 2. 0000 4. 0000 2. 0000
0. 0500 0. 0003 3. 9997 2. 0001 4. 0003 1, 9999
0. 1000 0. 0010 3. 9987 2. 0003 4.0013 1. 9997
0. 1500 0. 0023 3. 9970 2. o008 4. 0030 1. 9993
0. 2000 0. 0041 3. 9947 2. 0013 4. 0053 1. 9987
0. 2500 0. 0043 3.9917 2. 0021 4. 0083 1. 9979
0. 3000 0. 0071 3. 9874 2. oozs 4.0120 1. 9970
0. 3500 0. 0124 3. 7833 2. 0037 4, 0157 1. 9956
0. 4000 0. 0162 3. 2784 2. 0054 4,0211 1, 7244
0. 4500 0. 62065 3. 9729 2. 00&B 4. 0z2a8 1, 9932
0. 5000 0. 0253 3. ?&6D 2. 0084 4. 0332 1. 9917
0. 5500 0. 03064 3. 9595 2. 0102 4. 0401 1. 9900C
0. 6000 0, 0345 3. 2517 2.0121 4. 0477 1. 9881
0. 6500 G. 0428 3. 2433 2.0143 4. 0560 1. 9861
0. 7000 0. 0494 3. 9342 2. 0186 4, 0649 1, 9837
0. 7500 0. 0570 3. 9244 2.0191 4. 0744 1. 9814
0. 8000 0. 04648 3. 21329 2.0218 4. 0846 1. 9791
0. 8%00 C. 0732 3. 7027 2. 02464 4, 0954 1. 97564
0. R000 0. 0821 3. 8908 2. 0277 4. 1069 1. 9737
0. 9500 G. 0914 3. 8782 2. 0307 4.118%9 1. 9707
1. 0000 0.1013 3. 84649 2. 0344 4. 1316 1. 9677
1. 0500 0. 1117 3, 8508 2. 0380 4.144% 1. 2645
1. 1600 0.1226 3. 8360 2. 0419 4. 1588 1. 9611
1. 15300 G. 1340 3. 8205 2. 04460 4,1734 1. 9377
1. 2000 0.1459 3. 8042 2. 0502 4.1885 1. 9541
1. 2500 0. 1383 3.7873 2. 0547 4.2042 1. 2503
1. 3000 0.1712 3. 7699 2. 05794 4.2205 1. 7465
1. 3500 0. 1847 3. 7510 2. 0644 4. 2374 1. 9439
1.4000 0. 1984 3.7317 2. 0693 4. 2549 1. 9384
1. 4500 0. 2130 3.7114 2.074%9 4. 2729 1. 9342
1. 5000 0. 2280 3. 6907 2. 0804 4 2914 1. 9299
1. 5500 0.2434 3. 65670 2. 08&5 4.3107 1. 9255
1. GO0 0. 2574 3. 6466 2. 0926 4, 3305 1.9210
1. 65300 0. 2758 3. 6233 2. 0990 4.3508 1. 9143
1. 7000 0. 2728 3. 5771 2. 1057 4. 3716 1.9114
1, 7300 0. 3103 3. 57421 2.1127 4. 3929 1. 7048
1. BO0O 0. 2283 3. 5483 2.1199 4. 4148 1. 9019
1 8300 0. 34468 3. 9216 2.12793 4.4373 1. 87467
1. 2600 0. 3658 3. 4940 2. 1353 4. 44602 1. 8919
1. 2500 0. 3853 3. 4459 2. 1434 4. 4834 1. 8B&7
2. 00G0 0. 40653 3. 4361 2.191% 4. 50768 1.8815
2. 0560 0. 4258 3. 4058 2. 1607 4, 5320 1.8762
2. 1060 0. 44468 3. 3745 2. 1699 4. 93967 1. 8708
2. 1500 0. 4584 3. 3422 2.1794 4. 5823 1. 85854
2. 2060 0. 4704 3. 3070 2. 1893 4. 6082 1. B399
2 2360 0.35129 3. 2748 2. 1994 4. 6345 1. 8544
2. 3000 0. 5360 3. 2395 2. 2102 4. 6413 1. 8488

[continued)
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Table 3.7 Stability Functions (kL = xVP/F.) (continued)

compression tension
kL PIF, Su Sij Sii ij
2. 3300 0. 5993 3. 2032 2. 2213 4. 488B4H 1. 8431
2, 4000 0. 53B3&4 3. 1659 2. 2328 4. 7163 1. 8374
2. 4500 0. 4082 3. 1274 2. 2447 4.7444 1.8317
2. 3000 0. 6333 3. 0878 2.2572 4. 7730 1. 8259
2. 5500 0. &588 3. 0471 2.2701 4.8020 1. B2C1
2. 5000 0. &84% 3..0092 2. 2834 4.8314 1.8142
2. 6300 0.7115 2. 94622 2. 2974 4. B&612 1. BO83
2. 7000 0, 7388 2. 9179 2.3118 4.8215 1. 8024
2. 7500 0. 7662 2. 8723 2. 3268 4. 9221 1, 79565
2. 8000 0. 7944 2. 8254 2. 3425 4, 9531 1. 7965
2. 8500 0. B230 2.7772 2. 3387 4. 72845 1.7845
2. 7000 0. 8521 2. 7274 2. 37564 3. 0162 1.7785
2. 2500 0.8817 2. 6766 2.3932 2. 0484 1. 7725
3. 0000 Q. 2119 2. 4242 2.4115 5. 0BO9 1. 7665
3. 0500 0. 9425 2. 9703 2. 4305 3.1137 1. 7605
3. 1000 0. 9737 2, 3148 2. 4503 5. 1489 1. 7344
3. 1300 1. 0054 2. 45377 2. 4709 3. 18035 i.7484
3. 2000 1. 0375 2. 3290 2. 4924 3.2143 1.7424
3. 2300 1. 0702 2. 3385 2. 5148 9. 2485 1. 73863
3. 3000 1.1034 2. 2763 2. 53382 S. 2831 i. 7303
3. 3500 1. 1371 2. 2122 2. 56268 5.3179 1. 7243
3. 4000 1.1713 2. 1453 2. 5880 3. 3530 1.7183
3. 4500 1. 2060 2.0783 2. 6144 5, 3885 1.7123
3. 5000 1.2412 2. 0083 2. 4424 5. 4242 1. 70463
3. 5500 1. 2749 i, 923862 2. 46714 9. 45603 i. 7003
3. 6000 1.3131 1. BA18 2.7017 5. 4946 1.46944
3. &300 1. 3498 1. 7851 2.7335 2. 5332 1. 64884
3. 7000 11,3871 1. 7040 2. 7668 3. 5701 i.&4B25
3 7500 1. 4248 1, &243 2. 8016 9. 6073 1. 47648
3. 8000 1. 44631 1. 3400 2. g3ea 3. 6447 1. &708
3 85C0 1.3018 1.4528 2. 8745 5. 4823 1. 6647
3. 9000 1. 59411 1. 34627 2. 9168 5. 7203 i. 6591
3. 2500 1. 5BO9 1. 2696 2. 9392 2. 7584 1. 8533
4. 0000 1.6211 1.1731 3. 0037 5. 7948 1. 6476
4. 0500 1.661%9 1. 0733 3. 0507 5. 8355 1. 4419
4.1000 1. 7032 0. 74698 3. 1001 5. 8744 1. 863462
4. 1500 1. 7450 0. B&24 3.1523 2. 9135 1. 6305
4, 2000 1, 7873 0. 7210 3.2074 2, 7928 i. 4249
4. 2500 i.B8301 0. &353 d. 2656 5. 9923 1. 4193
4. 3000 1. 8734 0. 51492 3. 3273 &6.0321 1. 6138
4, 3500 1.9172 0. 3897 3. 3728 &, 0720 i. 6083
4, 4000 1, 92614 0. 2592 3. 4619 41122 1. 4028
4, 4300 2. 0064 0. 1231 3. 9354 6. 1524 1. 5974
4. 5000 2. 0518 -0, 0171 3. 46140 4, 1931 1. 5220
4, 5500 2. 0974 -0. 1478 3. 6975 6. 2339 1. 5B&7
4. 4000 2. 1440 -0. 3234 3. 7844 &. 2748 1.5814
4. 4300 2. 17908 -0. 48&7 3. 881% 4. 3159 1. 5741
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Table 3.7 (continued)

compression tension
kL P/P. 5 8 S Sy
4. V00O 2. 2382 -Q. &582 3. 7839 4. 3572 1. 5709
a+75G0 2.2861 —0,B387 4. 0934 &.3987 1. 5458
4 8000 2. 3344 ~1.028% 4, 2112 &, 4403 1. 5606
4. 8500 2, 3833 -1, 2292 4, 3381 4. 4821 1. 55594
4. 2000 2. 4327 —1. 4427 4,4731 4. 5241 1. 5505
4. 2500 2. 4826 —1. &&85 4. 6235 b, 3662 1. 5454
5. 0000 2. 9330 -1. 2087 4. 7845 &. 40835 1. 340&
5. 0300 2. 5837 -2. 1631 4. 599 &. 6509 1. 3357
5. 1000 2. 4354 -2. 4394 5.1514 6. 4934 1. 53309
9. 1300 2, 6873 -2, 7341 5. 3613 &, 7362 1. 5261
2. 2000 2.7397 —3. 051& 9. 5921 & 7770 1.5213
5. 2500 2.7927 -3. 3953 S5.8470 &. 8220 1. 5188
9. 3000 2. 8461 —-3. 7489 &. 1297 &, B&S2 1. 5120
5. 3500 2. 9001 -4, 1770 &. 4447 &. 084 1. 5074
3. 4000 2. 9345 4. &254 b. 7977 &. 9518 1.5028
5. 4500 3. 0095 -5, 1210 7.1957 &b, 9953 1. 4983
2. 9000 3. 04650 -3, &727 7.6472 7. 0390 1. 4938
5. 5500 3. 1209 ~-&. 291é&6 8. 1635 7.0827 1. 4894
5. 6000 3.1774 —-&. 7923 8. 7589 7.12664 1. 4851
5. 4500 4. 2344 =7.7937 9. 4524 7.170& 1. 4807
3. 7000 3. 2719 -8. 7215 10. 24693 7.2147 1. 4763
5. 7500 3. 3479 -2. B10& 11. 2447 7.23%0 1. 4722
5. 8000 3.4084 -—-11.1107 i2. 42779 7.3033 1. 4480
5. B500 3.4&675 -12. 6943 13. 8915 7.3477 1. 4637
5, 9000 3. 5270 -—14. 6717 15. 7455 7.3722 1. 4598
3. 92300 3.5870 -—-17.2192 i8. 1&&62 7. 4369 1. 4558
&. 0000 d. 6476 —20. 6379 21. 4544 7.4816 1. 4518
&. 0500 3. 70B& —25. 4848 26. 1470 7. 5264 1. 4478
&. 1000 3. 7702 -32. 7355 33. 4774 7.5714 1. 4439
&. 1500 3.8322 -45. 9092 446. 3106 7.61&4 1. 4401
&. 2000 3.8%48 -74. 3671 74. &217 7.64615 1. 4363
6. 2500 3. ?579 -188. 3001 188. 4032 7.7047 1. 4325

beam-column that is not subjected to transverse loadings and relative
joint translation {or sidesway). Note that when P approaches zero, we
see that kL = (VP/EIL approaches zero, and by using the L’Hospital’s
tule, it can be shown that s; reduces to 4 and s; reduces to 2 (see
Problem 3.3). Values for 5; and s;; for various values of kL are shown in
Table 3.7 and plotted in Fig, 3.18.

3.8 MODIFIED SLOPE-DEFLECTION EQUATIONS

Equations (3.7.13) and (3.7.14) are valid provided that the following
conditions are observed.
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STABILITY FUNCTIONS

12

-12

Beam-Columns

COMPRESSIVE AXIAL FORCE

— — - ~ TENSILE AXIAL FORCE

kL(=T [P/E,)

~

FIGURE 3.1§ Plot of stability functions

—

3.

4.
5.

. The beam is prismatic.

There is no relative joint displacement between the two ends of the
member, i.e., the member does not sway.

The member is continuous, i.e., there is no internal hinge or
discontinuity in the member.

There is no in-span transverse loadings on the member.

The axial force in the member is compressive.

If these conditions are not satisfied, modifications to the slope-deflection
equations are necessary. Some of these modifications to special cases of
beam-columns are described below.

3.8.1 Member with Sway

If there is a relative joint translation between the member ends,
designated as A in Fig. 3.19, the slope-deflection equations are modified
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FIGURE 3.1 Beam-column subjected to end moments (with relative joint
translation)

as
B Lafoa=)oafon=2)
Bl 50t 5,60 —Gut50) T (3.8.1)
R )
~E o0t 580 Ga+ s T (3.82)

3.8.2 Member with a Hinge at One End

If a hinge is present at one end of the member—as in Fig. 3.20a, in which
the B end is hinped—the moment there is zero, i.e.,

EI
MB=Z(Sij6A+sii6B)=0 (3.8.3)
from which
Sij
Gy = s 4 (3.8.4)

Upon substituting Eq. (3.8.4) into Eq. (3.7.13), we have

E! 5%
MA:Z_(Sii_S_i:)BA (3.8.5)
Note that 8y has been condensed out of Eq. (3.7.13) in Eq. (3.8.5).
Thus, by using Eq. (3.8.5), the degrees of freedom used for the analysis
can be reduced if the member is hinged at one end.
If the member is hinged at the A rather than the B end, as shown in
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FIGURE 3.20 Beam-column subjected to end moments (with one end hinged)

Fig. 3.20b, Eq. (3.8.5) is still valid, provided that the subscript A is
changed to B.

3.8.3 Member with Elasiically Restrained Ends

A member may not be connected rigidly to other members at its ends,
but may be connected instead to such members by a linear elastic spring,
as in Fig. 3.21, with spring constants Ry, and R,z at the A and B ends,
respectively. The additional end rotations introduced as the result of the
linear spring are M,/R,, and Mg/R.s. If we denote the total end

FIGURE 3.21 Beam-column subjected to end moments (with elastically
restrained ends)

kA R
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rotations at joints A and B by 8, and @y, respectively, as in the
preceding cases, then the member end rotations, with respect to its
chord, will be (85— Ma/R.a) and (8 — Mp/R.p). As a result, the
modified slope-defiection equations are modified to

El MA) ( MB)]
M. == 5. _ A Lo, — —2= 3.8.6
A L [SII(GA RkA +Sl"| 68 RkB ( )
Er M My
el O o A ] IS

Solving Eqs. (3.8.6) and (3.8.7) simultaneously for M, and My gives

El [( EIs: EIs? ) }
M, = . =iy 45,0 3.8.8
ASTR I\ T IR, LR/ AT Um (3.8:8)
Ef El%i  Els?
M =_[ 1-9 +( ii+—“'——”)6 i| 3. -
BELR PiTAT AN TR T IR R (3.8.9)
where
Els.. Els: EN? 52
e (i BB BB (B S
LR\ T LR \T) RpR OO

In writing Eqgs. (3.8.8) to (3.8.10), the equality s;; =5, has been used.
Note that as Ry, and R,y approach infinity, Eqs. (3.8.8) and (3.8.9)
reduce to Egs. (3.7.13) and (3.7.14), respectively.

3.8.4 Member with Transverse Loadings

For members subjected to transverse loadings, the slope-deflection
equations (3.7.13) and (3.7.14) must be maodified by adding an extra term
for the fixed-end moment of the member

El
MA:I(SHBA +SijBB)+MFA (3'8'11)

EI
MB =I(Sij9A +Sjj63) +MFH (3.8.12)

The fixed-end moments Mg, and Mgy can be obtained by a procedure
outlined in Section 3.5. Table 3.8 gives the expressions for the fixed-end
moments of three commonly encountered cases of transverse loadings.
The solutions for the first two cases have been derived in Section 3.5. The
last case is left as an exercise for the reader (see Problem 3.10).
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L
Table 3.8 Expressions for Fixed-End Moments (u =3 \/EEI)

Case Fixed-End Momonts
w , 2
(S3S S T  S My M = e Bltanu-ul)
T £/ F FB 2 2
M L e 4 tan v
Faf— 1 Yo
El~censiant
]_ l-.!.ZﬁU i
. i oL, 2(1-cos
i an =— ']
P i Mea "~ Meg =l 1
MFA‘ L — M u sinu
El-cansiant 8
|
aL | 2ub _ . 2ub
M“-—-CT IT—:us 2u-2U cos3 L —-s5in 2u
Q
L S N - N r_J v gin YT g 2uB | 202
2 F | snTTTEN T T
[ L Lp
Mg tM’ gL, 2 2
Fa "1 e M. e 28 - 2um
*___7 L | rg” g | T €05 2u-2u cos ——-sin 2u
El=consiant +sin 2ub +gin 2ua | 2ub]
L L
d=2ul2-2 cos 2u=2u sin 2u)

3.8.5 Member with Tensile Axial Force

For members subjected to an axial force that is tensile rather than

compressive, Eqs. (3.7.13) and (3.7.14) are still valid provided that the
stability functions defined in Eqs. (3.7.15) and (3.7.16) are redefined as

G o= (kL)* cosh kL — kL sinh kL

"N 2 — 2 cosh kL + kL sinh kL

kL sinh kL — (kL)?
2 —2cosh kL 4 kL sinh k1.

(3.8.13)

(3.8.14)

$ii =8 =

3.8.6 Member Bent in Single Curvature with fla=—0,

For the member shown in Fig. 3.22a, the slope-deflection equations
reduce to

El
MAzf(sii_Si]')BA (3815)
MB=_MA (3.8.16)
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fa} SINGLE CURVATURE

(zl DOUBLE CURVATURE

FIGURE 3.22 Beam-column subjected to end moments (single-curvature and
double-curvature bending)

3.8.7 Member Bent in Double Curvature with & =24,

For the member shown in Fig. 3.22b, the slope-deflection equations
reduce to

7
MA:-%(S“""SU)BA (3.8.17)

Ma=M, (3.8.18)

3.9 INELASTIC BEAM-COLUMNS

Qur discussion 50 far has been limited to the case in which the member
remains fully elastic. In other words, no yielding of material has taken
place in any part of the member. The assumption of a fully elastic
behavior is justified to some extent for the member under service loading
conditions. However, for failure behavior, we must include inelasticity in
the analysis.

The inclusion of inelasticity in an analysis makes the problem much
more complex because the governing differential equations become
highly nonlinear. In many instances, closed-form solutions are intractable
and recourse must be had to numerical techniques to obtain solutions.>™*?
In the following, we shall show that if certain simplifying assumptions are
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made, approximate solutions to some specific cases of inelastic beam-
columns can be obtained analytically.'®!!

In this section, the behavior and failure load of an eccentrically loaded
beam-column of rectangular cross section will be investigated. The
derivation follows closely to that given in reference 11.

The three basic assumptions used in the following derivation are the
following:

1. The deflected shape of the member follows a half-sine wave (Fig.
3.23a).

2. The equilibrium condition is established only at midspan of the
member.

3. The stress—strain relationship is assumed to be elastic—perfectly plastic
(Fig. 3.23b).

In the process of analysis, we will need to use the nonlinear
relationship between the internal moment (M) and the curvature

FIGURE 3.23 Elastic-plastic analysis of an eccentrically loaded rectangnlar
member

| : |
b,
P—,——V P —
o (I _ mk
‘ TS X h
\I; v=3 Ei"‘HLi" eross—section

{al ECGENTRIGALLY LOADED RECTANGULAR MEMBER

{b) ELASTIC-PERFECTLY PLASTIC STRESS-STRAIN
RELATIONSHIP
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(® = —y") with the presence of an axial force (P). It is therefore
necessary to develop this relationship before proceeding to the analysis.

3.9.1 M-®-P Relationship

Figure 3.24, a—c, shows a series of strain and stress diagrams that
correspond to three stages of loading sequences: the elastic (no yielding),
the primary plastic (yielding in compression zone only), and the
secondary plastic (yielding in both compression and tension zones),

FIGURE 3.24 Strain and siress diagrams

STRAIN STRESS
Ep =ty Oz =Ty

ta) CASE 1
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ER T
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i
rd
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{c) CASE 3
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respectively. For convenience, they are designated in the following as
Case 1, Case 2, and Case 3, respectively. The M—®—P relationship for
each case will be developed separately as follows:

Case 1: Elastic (Fig. 3.24a)

KINEMATICS
From the kinematic assumption that plane sections remain plane after
bending, we write

e=gy+ Dy for —-gs}vsg (3.9.1)

where g, is the axial strain at the centroid of the cross section.

STRESS—STRAIN RELATION
Since the entire cross section is elastic, the stress is related to the strain

by

sSYy=

(3.9.2)

b=
M a

c=Eg for -

EoculLiBrIUM
The axial force P and the internal moment M are related to the stress o

by

2
P=f odA = Eeb dy
A

=hrZ
f1/2
= E(eg+ ®y)bdy (3.9.3)
—hi2
/2
M=J' oydA=J Eeyb dy
A —hf2
77
= E(gg+ Dy)yb dy (3.9.4)

-2

In Egs. (3.9.3) and (3.9.4), b is the width and £ is the height of the
cross section (Fig. 3.23a).
By performing the necessary integrations, we obtain

P=EAg, (3.9.5)
and
M=EI® (3.9.6)

Equation (3.9.5) indicates that the axial force P is equal to the axial
stiffness EA times the axial strain g, at the centroid of the cross section.
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Equation (3.9.6) is the familiar elastic beam moment-curvature relation-

ship of M = —Ely".
Introducing the notations

(3.9.7)

(3.9.8)

(3.9.9)

(3.9.10)

(3.9.11)

(3.9.12)

(3.9.13)

P,= Ao, =bha,
bh*
My = SCF), = ? G'y
2e, 2o
b =¥ 2y
Y h h
?
P}'
m= M
M)‘
¢
b=
(DY
Equations (3.9.5) and (3.9.6) can be written in a nondimensional form
as
p=Eg/o,
and
m=4¢

The range of applicability of Eq. (3.9.14) is for ¢p < (1 —p).

Case 2: Primary Plastic (Fig. 3.24b)

KinEMmaTICS
h h
E=gg+Pdy for ——sy=s-—
0 'y 5 Y 5
Since at y = h, e= &y, we have
g, =gq+ Oh
from which we obtain
go= £y~ Bh

and substituting this into Eq. (3.9.1) leads to

_ h h
e=g,—(h—y) for —Es—:ys_a

(3.9.14)

(3.9.1)

(3.9.15)

(3.9.16)

(3.9.17)
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STRESS—STRAIN RELATION

h _
g=FEe for —Esysh (3‘9'18)
= fi h= <ft— 3.9.19
=gy, for 1-y-2 (3.9.19)
EouiLierIuM
P= f agdA
A
i _ h2
=j E[Ey —(h—y)®)bdy + j o,b dy (3.9.20)
—-hi2 1
M= J oy dA
A
Jt _ niz
= Ele, — (h —y)Plybdy + j ayby dy (3.9.21)
—hi2 it

By performing the necessary integrations and eliminating 4 from the
resulting expressions (3.9.20) and (3.9.21), we obtain

1— .1p)
m =3(1—p)—%— (3.9.22)
where m, ¢, and p are as defined in Eqs. (3.9.11), (3.9.12), and (3.9.10),

respectively.
The range of applicability of Eq. (3.9.22) is for (1 —p)=¢ < 1/(1 —p).

Case 3; Secondary Plastic (Fig. 3.24c)
KiNEMATICS
The strain at any point y from the centroidal axis is expressed by Eq.
(3.9.17) as
- h
e=g,~(h—y)D for —Es.ys_ (3.9.17)
In addition, to facilitate the integration, we need to establish a

relationship between the elastic-plastic boundaries # and /4. This can be
achieved by using similar triangles in the strain diagram:

I

£y

g=a—h (3.9.23)
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STRESS—STRAIN RELATION

h
o=—o, for —Es_ys_—g‘ (3.9.29)
o=Ee for —g<sys<h (3.9.29)
g=og, for h=y s.% (3.9.26)
EquiLirRIUM
P=j ada
A
- A _
=j " (-obdy +j Ele,— (i — y)®]b dy
_ _z
112
+j oyb dy (3.9.27)
i
M=j oydA
A

—§ it -
=] opbay+ | Ele,-G-nepbay
K

—Ir

hi2
+J’_ oyyb dy (3.9.28)

]

By performing the necessary integrations, with g given in Eq. (3.9.23),
and eliminating A from the resulting expressions (3.9.27) and (3.9.28), we
obtain

m=31-p)—— (3.9.29)

The range of applicability of Eq. (3.9.29) is for ¢ = 1/(1 - p).
To sum up, the nondimensional moment-curvature-thrust (m — ¢ — p)
relationships for a rectangular section can be written as the following:

Case 1:
m=¢, for ¢=(1-p) (3.9.30a)

Case 2:

m=3(1—p)—%, for (1-p)=¢=<1/(1—-p) (3.9.30b)
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FIGURE 3.25 Moment-curvature-thrust relationships
Case 3:
3 2 1
m=3{1—p )—chz, for ¢=1/(1—-p) (3.9.30c)

Note that if the member is fully elastic (Case 1), the axial force has no
effect on the moment-curvature relationship. However, as soon as
yielding commences (Case 2 and Case 3), the moment-curvature re-
lationships will be affected by the axial force. This explains why the
analysis of an inelastic beam-column is much more complex than an
elastic beam-column: because the moment-curvature relationships be-
come nonlinear as yielding starts to occur in the member. Fipure 3.25
shows some plots of the moment-curvature (m —¢) relationship for
various values of p.

It should be remembered that the moment-curvature-thrust relation-
ships developed above are valid only for rectangular cross sections with
idealized elastic-plastic, stress—strain behavior. For general cross sections
with general stress—strain behavior, it is often necessary to evaluate the
integrals for the axial force P and internal bending moment M
numerically. Numerical and approximate moment-curvature-thrust ex-
pressions for various cross-sectional shapes have been developed and are
discussed in detail in reference 2.

3.9.2 Approximate Solutien

With the moment-curvature-thrust relationships developed, we now
proceed with the investigation of the inelastic behavior of an eccentrically
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loaded beam-column (Fig. 3.23a) by using the analysis method presented
in reference 11. By assuming that the deflected shape of the member

resembles a half-sine wave, we write
X
= & sin —
Y L

from which we obtain
T omx
'=&—cos—
yEOTeesT
and
2
oo

The curvature at midspan is

L a\?
2u=~(3)=5(7)

where & is the deflection at midspan.
The equilibrium condition at midspan (Fig. 3.26) is

My+Pé=M,
where
My=Pe
e = load eccentricity
M, = moment at midspan
Denoting
— M,
Mg = E
g =
"M

(3.9.31)

(3..32)

(3.9.33)

(3.9.34)

(3.9.35)

(3.9.36)
(3.9.37)
(3.9.38)

(3.9.39)

(3.9.40)

FIGURE 3.26 Free-body diagram of the eccentrically loaded member cut at

midspan

L/ m
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Equation (3.9.35) can be written as

mﬂ+ﬁ=mm (3.9.41)

¥

Since, from Eq. (3.9.34)
L 2
(5 |
P_é_.._|:q)—x._(£)(q)“‘) 3.9.42
M, EI®,  \PJ\O (3.9.42)

We can write Eq. (3.9.41) as

mo+L o =m,, (3.9.43)

e

If we substitute the moment-curvature-thrust (rm — ¢ — p) relationships
[Eq. (3.9.30)] with m =m,, ¢ = ¢, (normalized moment and curvature
at midspan) into Eq. (3.9.43), and rearrange, we have the following:

Case l: ¢, =1—p

g = ¢m(1 _p%) (3.9.44a)

Case2: (1—-p)s¢pn=1/(1—p)

Y-
o= 31— p) _%_5 . (3.9.44b)

Case 3: o =1/(1~p)

~Ls. (3.9.44c)

3
m=y =P =3

2

Figure 3.27 shows a plot of the #y— ¢, curve for a simply-supported,

eccentrically loaded member with the following dimensions and
properties:

b=1in, h=2V3in, L=120in
e=115in, o,=34ksi, £=30,000ksi

Notice that at approximately s, = 0.47 yielding starts at the compres-
sion side of the cross section. As a result, a noticeable decrease in
stiffness of the member is observed. The degradation of stiffness
continues until at approximately the peak moment m,=0.53, the
member is no longer able to resist an increase in load. Therefore, the
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FIGURE 3.27 Plot of m, versus ¢,

maximum load the member can resist is

. (bhzay)
P= ﬂd_g = m()My = i o
€ € €
2
_(0.53)(1)(2V3)(34) _ 31.3 kips

6(1.15)

For this case, the maximum load occurs in the primary plastic range
[i.e., 1=-p)=¢,=1/(1—p)]. However, this is not always the case.
Depending on the slenderness ratio and the magnitude of eccentricity,
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the failure load may occur in the secondary plastic range [i.e., ¢, > 1/
(1—p)] In this example, the maximum end moment (rmg),,,. has been
obtained graphically as the peak point of the m, versus ¢, curve. The
same maximurm moment can be obtained more conveniently by realizing
that the peak point of the curve corresponds to the condition

dmg

o 0 (3.9.45)

Thus, by setting the derivative of Eq. {3.9.44b, ¢) with respect to ¢,

equal to zero, the value of ¢, that corresponds to (mg)m.. for each
relevant case can be calculated. Backsubstituting the value of ¢,, so
obtained into the corresponding equation will give the value of (#4) -
In doing so, a relation between (mig)m., and p can be established as the
following:

If Case 2 controls, i.e., if (1 — p)? <P«

e

(M) = 3(L— p) [1 - (i)m] (3.9.46)

If Case 3 controls, i.e., if 0 << (1-p)?
p

e

(MoYme = g [1 - (Pﬁc)“] (3.9.46h)

Thus, by using Eq. (3.9.46a) or Eq. (3.9.46b), depending on the range
of applicability of the equations, ultimate strength interaction curves for
my and p (i.e., curves giving the value of (My),,.. for a given value of P)
can be developed. Figure 3.28 shows three such ultimate strength
interaction curves for slenderness ratios L/r =20, 60, and 120.

Although a rectangular section with idealized stress—strain relationship
has been used here to obtain the interaction diagrams shown in the
figure, the same procedure can be extended to obtain ultimate strength
interaction diagrams for I-shaped sections with or without residual stress.
However, the determination of ultimate loads for these sections involves
considerably more effort and, in many cases, resort to numerical solution -
techniques is inevitable. Various numerical techniques to obtain ultimate
strength interaction diagrams are summarized and presented in detail in
references 2 and 3. Two such numerical techniques (Newmark’s method,
step-by-step numerical integration) will be presented in Chapter 6.

From the above example, one can see that aithough several simplifying
assumptions concerning the member and material behavior have been
used, the determination of the maximum load that a member can resist is
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still cumbersome. From a practical standpoint, it is more convenient if
the maximum load can be determined approximately in a direct manner
by simpler formulas. To this end, design interaction formulas provide just
such a quick and easy way for estimating the maximum load-carrying
capacity of a beam-column. Design interaction equations are the equa-
tions that relate the ratio of axial stress (force} in the member to the
ultimate axial capacity of the member and the ratio of bending stress
(moment) in the member to the ultimate bending stress (moment} of the
member. These design interaction equations provide a convenient and
direct means for designers to estimate the adequacy of members
subjected to combined stresses (forces). Various forms of design interac-
tion equations used for design purposes will be discussed in the following
section.

3.10 DESIGN INTERACTION EQUATIONS

The interaction curves shown in Fig. 3.28 for rectangular cross sections
based on Eq. (3.9.46a) or Eq. (3.9.46b) can be approximated by a simple
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linear interaction equation of the form

P My
-— +_— =

Pt =l (3.10.1)

where

P = axial force in the member
P, = ultimate axial capacity of the member in the absence of
primary bending moment
M = maximum moment in the member
M, =ultimate moment capacity of the member in the absence of
axial force

Depending on the design philosophy, the ultimate axial capacity of the
member F, can be represented by the CRC curve and SSRC curves or
the LRFD curve (Chapter 2). The quantity M. however, is the
amplified moment in the member and can be represented by

Moo = AeM, (3.10.2)

where Ag is the moment amplification factor discussed earlier in the
chapter.

For an eccentrically loaded member, which is equivalent to 2 member
subjected to equal end moments and an axial force, the expression for A
is (from Eq. 3.4.27)

Ap=—" (3.10.3)

where C,, is given by Eq. (3.4.23).
Upon substituting Eg. (3.10.3) into Eq. (3.10.2) and then into Eq.
(3.10.1), we obtain

P, GM
P, MJ(1-P/R,)

Equation (3.10.4) is plotted as dotted lines in Fig. 3.29 by using
P,=LRFD curve (Eq. 2.11.9), M, = M, the plastic moment capacity of
the cross section, and C,=1 [Eq. (3.4.23) with M;/M,=—1]. The
theoretical ultimate strength interaction corves are given by Eq.
{3.9.46a,b) and are plotted in Fig. 3.28. However, to obtain a direct
comparison, these curves are replotted as solid lines in Fig. 3.29 using an
abscissa of My/M, rather than M,/M,. For rectangular cross sections, the
plastic moment M, and the yield moment M, are related by M, =1.5 M,
(Eq. 3.9.30c with p=0 and ¢ ==). As can be seen, except for low
slenderness ratios the interaction equation (3.10.4) gives a good ap-

(3.10.4)
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FIGURE 3.29 Comparison of theoretical and design ultimate strength interaction
curves

proximation to the theoretical solution. For low slenderness ratios, Eq.
(3.10.4) becomes too conservative. This is because the P — § effect (i.e.,
the additional moment induced in the member as a result of the axial
force acting through the lateral deflection) is not significant. Conse-
quently, the presence of the term 1/[1 — (P/P.)] which reflects the P — &
effect will render Eq. (3.10.1) too conservative. In fact, if the slenderness
ratio of the member approaches zero, no instability will occur and a
nonlinear interaction equation of the form

PN M,

(Py) +bMF 1 (3.10.5)
will give a much better approximation to the theoretical ultimate strength
interaction curve. The constants a and b define the shape of the
interaction curve. For rectangular sections, a =2, b =1, and Eq. (3.10.5)
represents the exact ultimate strength interaction curve (Fig. 3.30). For
I-section bent about the strong axis, a=1, & =1.18, and Eq. (3.10.5) is
an approximate ultimate strength interaction equation (Fig. 3.31). For
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FIGURE 3.30 Ultimate strength interaction curve for rectangular cross sections
with Lfr=0

I-section bent about the weak axis, =2, b=1.19, and Eq. (3.10.5)
represents an approximate interaction equation (Fig. 3.32).

It should be mentioned here that the use of M, =M, in Eq. (3.10.4)
implies that lateral torsional instability will not occur in the member.
Lateral torsional instability is a phenomenon in which the member bends
out of its plane of leading in addition to in-plane deflection as a result of
insufficient lateral stiffness or bracing. The subject of lateral instability of
beams will be discussed in Chapter 5. If lateral torsional instability occurs
in the member, the ultimate moment capacity M, of the member will be
less than M, as the member will fail by lateral torsional buckling before
the plastic moment capacity of the member can be attained.

Furthermore, it should be noted that Eq. (3.10.4) can also be used for
members whose primary bending moment results from transverse loading
rather than from end moments. Nevertheless, in these cases where the
primary moment results from transverse loading, the G value is defined
as

C,=1+WP/P, (3.10.6)
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This definition of C, can be induced by comparing Eq. (3.6.19) with
Egs. (3.10.2) and (3.10.3). The values of ¥ and C,, for various transverse
loading cases are shown in Table 3.9. Note that the ¥ values for Cases 1,
3, 4, and 6 have already been developed in detail in previous sections [see
Eq. (3.2.41), Eq. (3.6.32), Eq. (3.3.20), and Eq. (3.6.20), respectively|.
The determination of the W values for Cases 2 and 5 is left as an exercise
for the reader (see Problem 3.4). Note that for the two simply supported
cases (Cases 1 and 4), the values of W were determined by expanding the
theoretical beam-column solutions for M., whereas for the other cases
the values of W were determined by comparing Eq. (3.6.19) with the
corresponding theoretical solntions for M.

Equation (3.10.4) can also be extended to the case in which bending
occurs in both axes. In such case, the interaction equation takes the form

P meMl}x CmyMOy
—+ = 3.10.7
P, M, (\-P/P,) M,(1-P/P,) ! ( )
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in which the subscripts x and y refer to the action about the x and y axes
of the member, respectively.

Equation (3.10.7) gives the general form of the biaxial bending
interaction equation used in practical design when stability governs the
limit state."* For member with low slenderness ratios or at support
locations, yielding rather than instability may govern the limit state. In
this case, an extension of Eq. (3.10.5) will be more appropriate. For
exarnple, for I-section, a conservative form by using @ =1 for both axes
of bending can be written (see reference 12) as

P M, M

4 {r + Oy

P, 1.18M,,
where M, and M, are plastic moment capacities of the I-section with
respect to strong- and weak-axis bending, respectively.

In the following sections, interaction equations for various design
formats will be summarized and discussed.

oM I (3.10.8)
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3.10.1 AISC/ASD Format

The AISC/ASD format is a stress-based design format. As a result,
allowable stresses and service loads rather than ultimate strengths and
maximum loads are used as the basis for design. Equations (3.10.7) and
(3.10.8) can be converted to unit of stresses and a factor of safety applies
to them to bring them into the service load range.

If stability controls, the interaction equation is

fay JoxGonn JorComy g (3.10.9)

E R —fJFo) R —filFh)

where

fo=P/A,=axial stress at service load
Jox: foy = Bexural stresses at service load due to primary bending
moment about the x and y axes, respectively
F,=allowable compressive stress if the member is under axial
compression only [= AISC/ASD column curve equation

(2.11.4) divided by the area of the cross section]

By, Iy = allowable flexural stresses about the x and y axes, respec-
tively, if the member is loaded in bending only (see Chapter

5)

C,, = define as follows:

1. For members braced against joint translation and without
transverse loading between supports, C,, is referred to as
the equivalent moment factor and is defined in Eg.
(3.423) as C,,=0.6 - 0.4 M,/Mg=0.4, where M,/ Mg is
the ratio of the smaller to larger end moments, It is
negative if the member is bent in single curvature and is
positive if the member is bent in reverse curvature.

2. For members braced against joint translation with trans-
verse loading between supports, G, is referred to as the
momen! reduction factor. It is defined in Eg. (3.10.6) as
C,=1+WP/F, and it is an integral part of the moment
magnifier [see Egs. (3.2.41), (3.3.20), and (3.6.19}].
Table 3.9 gives the €, values for various transverse
loading cases. However, the AISC Specification suggests
the use of C,=0.85 for members with restrained ends
and C,, = 1.0 for members with unrestrained ends.

3. For members not braced against joint translation, C, is
considered to be 0.85. The number 0.85 is derived based
on the model structure shown in Fig. 3.33a. For members
in which sidesway is possible, a different type of secon-
dary moment known as the P— A moment will be
induced in the member. This P — A moment occurs as a
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Table 3.8 Values for ¥ and C,,

—

c
ase s c_
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[ 2 ]
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s .
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|
—
6 \ .
— 4 -0.2 1-0.2 PIP,,

result of the axial force P acting through the sway A of
the member. If we consider the free-body diagram of Fig.
3.33b, it roughly resembles a simply supported member
loaded by a transverse load at midspan, so from Eq.
{3.3.20), the value of C, is 1 —0.18P/F.,. However, due
to the errors involved in the approximation, the AISC
Specification recommends the use of 0.85.

Fi, Fo, = Critical elastic buckling stress about the x and y axis,
respectively, divided by a factor of safety of 23/12 and
evaluated using the effective length of the member. (The
effective lengths of isolated members with idealized end
conditions have been shown in Table 2.1. The effective
lengths of members as parts of a frame will be discussed in
the next chapter.)

If the yielding of material controls, the interaction equation is

fa fbx fby
———t+—+—=2=11 3.10.10
0.60F, Ry Fy ( )
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FIGURE 3.33 AISC/ASD model for sway frames

Note that the moment magnification factor C,,/(1 — f./F) is absent in
Eq. (3.10.10) because this equation pertains to cases in which yielding
rather than instability controls the design. This happens at support
locations in braced frames and for members with low slenderness ratios in
unbraced frames. The number 0.60 {=1/1.67) in the denominator of the
first term that refiects the axial force effect is a safety factor applied to the
CRC curve in order to obtain the AISC/ASD curve at KL{r=10Q.

In actual design, both the stability [Eq. (3.10.9)] and yield [Eq.
(3.10.10)] interaction equations should be checked. However, if the axial
force in the member is small, say if f,/F, =0.15, the AISC Specification
allows the use of the following interaction equation, instead of Eqgs.
(3.10.9) and (3.10.10):

f:‘| bx fby
=+—+==1.0 3.10.11
‘F':!. Fllnx Fby ( )

Thus, in the design, the value f,/F, is first evaluated. If f,/F, is less than
or equal to 0.15, Eq. (3.10.11) is used to check the adequacy of the
section, If f,/F, is greater than (.15, then both Eqgs. (3.10.9) and (3.10.10)
are used to check the adequacy of the section.
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3.10.2 AISC/PD Format

The AISC/PD format provides two interaction equations for the design of
beam-columns.
If yielding contrals,

+ —=1.0 (3.10.12)

where

P,= A F, = yield load of the section where A, is the area of the cross
section

Mp = ZF,=full plastic moment capacity of the section where Z is
plastic-section modulus

P and M are the factored axial force and moment (service loads time load
factor). The load factor is 1.7 if only gravity loads are acting and is 1,3 if
wind or earthquake loads is acting in conjunction with gravity loads. Note
the correspondence of Eq. (3.10.12) with Eq. (3.10.5).

If stability controls,

P CuMo
—t o =1 0.
RS TAGES TR (3.10.13)

where

P, = ultimate axial compressive strength of the axially loaded column
taken as 1.7 times AISC/ASD column curve using the effective
length of the column

M, = maximum resisting moment in the absence of axial force, taken
as M, if the member is braced against lateral torsional buckling
and taken as

(L/ry)\/}—‘y

o0 ] =M,<M, (3.10.14)

Mm=[1.07—

if the member fails by lateral torsional buckling.

In Eq. (3.10.14) the units are inches and ksi.
Py =ma"EI/(KLY
C.=same as in AISC/ASD format

Again, in actual design, both the strength interaction equation [Eqg.
(3.10.12)] and the stability interaction equation [Eq. (3.10.13)] are used
to check the adequacy of the section.
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3.10.3 AISC/LRFD Format

The AISC/LRFD format based on the exact inelastic solutions of 82
beam-columns,* recommends the following interaction equations for
sway and nonsway beam-columns.

For P/¢ P, =0.2

P +§( Mur M., )<10 (3.10.15)
qbcPu 9 qbeux ¢bMuy ' o

For P/¢.P,<0.2

P M + Moy 1.0 (3.10.16)
qucPu d)bMux q)bMuy ) o

where

P, =ultimate axial compression capacity of the axially loaded
column [= AISC/LRFD Column Curve Eq. (2.11.9) using
the effective length of the column]

M, M, = ultimate moment resisting capacity of the laterally unsup-
ported beam about the x and y axes, respectively (see
Chapter 5)
¢. = column resistance factor (= 0.85)
» = beam resistance factor (=0.90)
P = design axial force
M., M,, = design moment for the member about the x and y axes,
respectively, calculated as follows

M,=BM,+ B.M, (3.10.17)

in which

M, = moment in member assuming there is no lateral translation
in the frame calculated by using first-order elastic analysis
(see Fig. 3.34a)

M,, = moment in member as a result of lateral translation of the
frame only calculated by using first-order elastic analysis
(see Fig. 3.34b)

B, = P — 6 moment amplification factor (designated as Ar in the
previous sections)

B =—2—z1 10.
3 > (3.10.18)
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FIGURE 3.34 AISC/LRFD approach for calculating M, and M),

B, = P — A moment amplification factor, evaluated by
1

- .10.1

B, 1__EPA0 (3.10.19)

Y HL
or alternatively

1

Bz=——-ﬁ- (3.10.20)

1-—

E Pf:k

The terms in Eqs. (3.10.18) to (3.10.20) are defined as follows:

C.=0.6—0.4 M,/M;, same as defined previously in ASD, except that
the limit condition C,= 0.4 has been removed in LRFD. This
[imit was found to be overly conservative for M;/M,=0.5to 1.0
when compared with the elastic C,, factor used in ASD with the
exact elastic-plastic computer solutions.'
P, =m’EH(KL)*
Y, P = axial loads on all columns in a story
A, = first-order translational deflection of the story under con-
sideration )
¥, H =sum of all story horizontal forces producing A,
L = story height '

The P — A moment amplification factor B, expressed in Eq. (3.10.19)
was developed based on the story stiffness concept.’>"” By assuming that
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(i) each story can behave independently of other stories, and (ii) the
additional moments in the columns caused by the P— A effect is
equivalent to that caused by a lateral force of Y, PA/L, the sway stiffness
of the story can be defined as
_ horizontal force
"7 lateral displacement

=EH=EH+EPA/L

.10.21
A, A (3.10.21)
Solving Eq. (3.10.21) for A pgives
1
= ——— A .10,
A TR | (3.10.22)
LHL

If rigid connections and elastic behavior are assumed, the moment
induced in the member as a result of sway will be proportional to the
lateral deflection. Therefore, we can write the amplified sway moment
M, as

1

My = ———— M 3.10.
= (g (31023)

Y HL

The alternate expression for B, expressed in Eq. (3.10.20) was
developed based on the multiple-column buckling concept.'® By assuming
that when instability is to occur in a story, all columns in that story will
become unstable simultaneously. As a result, a direct extension of Eq.
(3.3.19) is justified by replacing the term P/P., by ¥, P/}, P., where the
summation is carried through all columns in a story. Thus

1
A=f ——— 140.
—3F Ay (3.10.24)
ZPck

Using the same argument, that if rigid joints and elastic behavior are
assumed, the sway moments are directly proportional to the lateral
deflections of the story, we can now write the amplified sway moment as

1

Mu]l. =i I_Z—P _ﬂ/fn (3.10.25)

YR

It should be mentioned that Eq. (3.10.17) is a rather conservative
estimate of the maximum moment in the member. This is because the
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amplified moment resulting from the P — & effect (i.e., the term B, M,,)
and the amplified moment resulting from the P — A effect (i.e., the term
B.M,) do not necessarily coincide at the same location. For elastic
behavior, the P — A effect usually magnifies the end moments. Neverthe-
less, because of the assumptions involved in developing the P —4& and
P — A amplification factors, as well as the difficulties involved in locating
the exact location of each of the magnified moments in the member, Eq.
{3.10.17) gives a justifiable estimation of the design moment for the
member.

Note that, unlike the ASD and PD interaction equations in which both
the yielding and stability interactions equations are needed in the design
process, only one interaction equation is needed if the LRFD approach is
used. The applicable equation is determined by the term P/¢ F,. If
P/p.P,=02, Eq. (3.10.15) is applicable, and if P/¢.F,<0.2, Eq.
(3.10.16) is applicable. Another feature of the LRFD approach that is
different from the ASD and PD approaches is that the P— 6 and P - A
moment magnification effect is treated independently, as is evident from
Eq. (3.10.17). Recall that in the ASD or PD approach, if the member is
subjected to sway, the factor C, is taken as (.85, therefore the moment
magnification factor is 0.85/(1 — P/P.;) and this moment magnification
factor is applied to the total first-order moment of the member regardless
of whether it is caused by gravity load (M,,) or lateral loads (M,,).

In addition to Eqs. (3.10.15) and (3.10.16), the LRFD Specification
also recommends a set of nonlinear interaction equations in its Appendix
that are valid for nonsway members with end moments M, and M,,.
These equations are given as follows:

If yielding occurs,

o))
—) + —) <1.0 3.10.26)
(oo By (
If stability controls
meMDx)" (CmyMny) " -
: 2 <1.0 3.10.27
( ‘prnx ¢any ( )
where
P/P
=1.6——-— for 3.10.28
SR YT (3.10.28)
04+£+2f>10 for b/d=0.3 3.10.29
ye ATt c . (3.10.29)
1 for b/d<0.3

In = natural logarithm
b;= flange width, in inches
d = member depth, in inches
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M. =1.2M,[1 - (P/R)] < M,, (3.10.30)
My, =12M,[1- (P/PY]<M,, (3.10.31)

we = My [1— (P/@pPY|1 — (P/P.)] (3.10.32)
M.y =M1~ (P/$pP)I[1 - (P/P,)] (3.10.33)

The nonlinear interaction equations expressed in Egs. (3.10.26) and
(3.10.27) were developed by Tebedge and Chen' based on curve-fitting
to theoretical elastic-plastic beam-column solutions.?

3.11 AN ILLUSTRATIVE EXAMPLE

Qur discussion of the behavior of beam-columns in this chapter focuses
primarily on isolated members. In reality, most structural members exist
as parts of a framework and their behavior is therefore influenced by the
behavior of other members of the frame. To illustrate some aspects of
this interaction between the beams and columns in a frame, it is
instructive to consider the following example.

Shown in Fig. 3.35 is a simple braced frame consisting of a beam and a
column, The beam is loaded by a uniformly distributed load of w. After
the full value of w is reached, the column is then loaded by a
monotonically increasing concentric load of P until failure occurs. The
behavior of the beam and the column will now be studied as P increases
from zero to its ultimate value.

p  Lapplled after W hes reached FIGURE 3.35 Two-member frame
Its full valup )
w
f | [
—— B ! T ‘ ' ! c
El T
L El
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FIGURE 3.36 Free-body diagrams

In performing the analysis, the following assumptions are used:

1. The axial force in the beam is negligible.
2. The axial force in the column is represented by P.

These assumptions are illustrated in Fig. 3.36 in which the free-body
diagrams of the beam and column are shown. Assumption 1 implies that
the axial force Mga/L induced in the beam by the column is negligible
and assumption 2 implies that the additional axial force Vy induced in the
column from the beam shear is negligible.

Column Analysis

As can be seen by referring to Fig. 3.36d, the differential equation of
equilibrium for the column can be written as

M
—Ely*— Py, — ZAxc=0 (3.11.1)
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Upon rearranging and using the notation k*=P/E[, Eg. (3.11.1)
becomes

M,
"kl = - BA 3.11.2
e < TE" ( )

The general solution of Eq. (3.11.2) is

M,
¥. = A sin kx+ B cos chc~LE?;2xc (3.11.3)

The constants A and B can be evaluated by using the boundary
conditions

y(0)=0 (3.11.4)
y(L)=0 (3.11.5)
It can easily be shown that by using Eqs. (3.11.4) and (3.11.5)
B=0 (3.11.6)
_ Mza
= (3.11.7)

Upon substituting the constants expressed in Eqgs. (3.11.6) and (3.11.7)
into Eq. (3.11.3), we obtain the equation for the deflected shape of the
column as

Mpa fsinkx, x.

Ye=p (51_n 3 _E) (3.11.8}

By successive differentiation, the equations for the slope, moment, and
shear can be obtaipned as

, Mgpa (kcosk}cc 1)
= ke 311

Ye="p \sinkL L (3.11.9)

Mg,
M, = —Ely" =—BA_gin ke, 11.10
Y Skasm (3 )

My nk

V.= —Ely" = . 3.11.11
'V S kL cos kv (3.1 )

The location of the in-spgn maximum moment in the column is
obtained by setting the shear V, equals zero.

Mpak
V.= = 1112
Sin kL coskx. =0 (3.11.12)

Since the term Mg, k/sin kL is not zero, therefore, we must have
coskx.=0 (3.11.13)
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The lowest value of kx_ satisfying the above equation is

x, =g (3.11.14)

Substituting Eq. (3.11.14) into the moment equation (3.11.10) gives
the value of the in-span maximum moment as
MBA.
sin kL

(Me)max = (3.11.15)
In Eq. (3.11.15), Mg, is the column end moment at B whose value can
be expressed as a function of the applied load w and P by consideration
of joint equilibrium and compatibility at B as demonstrated in the
following.

Beam Analysis

By neglecting the axial force in the beam, the slope-deflection equation
for the beam can be written as

EI w2
MBC=Z(4BB+28C) '—E (31116)
EI L?
Men = (205 +400) + “12 (3.11.17)

where iy and 8. are the beam end rotations at B and C, respectively,
and wL?*/12 is the fixed-end moment of a uniformly loaded beam.
Since the moment at C is zero, we have

_|

El wl*
Mep=—(2 48 =
cB=T7 (20p +48c) + 12 0
from which
wl? 0y
Oc=— -— 1.1
©7 48EI 2 (3.11.18)
Substituting Eq. (3.11.18) into Eq. (3.11.16) gives
EI wL?
MBC=Z(3BB) _'_8— (3.11.19)
and, upon rearranging,
MgcL  wL?
fp=—7"7+ 3.11.20
B 3El " 24EI ( )

The location of the in-span maximum moment in the beam is obtained
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by setting the shear in the beam equal to zero:

wl M,
Vh=(7—%) —wxy=0 . @a121)
which gives
L My
¥p=o=F (3.11.22)

The value of the in-span maximum moment in the beam is then
obtained by evaluating the moment at the distance x, given by Eq.
(3.11.22)

(Mb)mux =M I:h=Lf2—AfncInvL
wl M wx?
[ Moct (F- TP
_ M%C MBC WLI
Towll 2 8

2 :be=(LE)—MnEIwL

(3.11.23)

joint Compatibility and Joint Equilibrium
The compatibility of joint B requires that
~Yele=2.= 05 (3.11.24)

The minus sign in Eq. (3.11.24) takes account of the fact that the column
slope is negative at x.= L, whereas 8y is defined as positive when it
rotates clockwise from the chord. Using Egs. (3.11.9) and (3.11.20), Eq.
(3.11.24) can be written as

_Mm( k _l)_MBCL wL?

P \tankL L) 3EI '24EI (3.11.25)

For joint equilibrium (Fig. 3.36b), we must have
MEA+MBC=O (3.11.26)

Solving Egs. (3.11.25) and (3.11.26) simultaneously for Mg, and Mpc
gives

wl? [ kL2 ]

Mpa = — Mg = —
BA BC™ 8 |3 —3kL cotkL + k2L?

The above expression for the joint moment can be used in Egs.
(3.11.15) and (3.11.23) for the maximum in-span moment in the column
and beam, respectively.

(3.11.27)



224 Beam-Columns

In summary, the maximum in-span moment in the column is given by

Mg A
M=~ 3.11.2
(M.) sin kL (3.11.28)

and the maximum in-span moment in the beam is given by
Mzc MBC+ wL?

— 4+ 3.11.29
wl? 2 8 (3.11.29)

(Mh)max =

where My, and Mpc are given by Eq. (3.11.27).

If the applied column foree P is zero, it can easily be shown by using
the L'Hospital rule in Eq. (3.11.27) or by a direct first-order analysis that
the column and beam-end moments are given by

= —Mac=—— 3.11.30
Mya=—Mac=—7 (3.11.30)

The maximum in-span moment in the beam is given by

49
(Mb)nmx = 51_2' sz (3 11. 31)

The maximum-column moment occurs at the end and is therefore equal
to wL?/16.

FIGURE 3.37 Behavior of the two-member frame
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Figure 3.37 shows a plot of the maximum-beam moment (M, )veam.
the maximum-column moment (M.,)comma. 2nd the beam-end moment
Mpc (= —Mpa, the column-end moment) nondimensionalized by the
quantity wL?/8 as a function of the applied column force P
nondimensionalized by the Euler load. The maximum beam moment is
obtained as the larger value of the beam-end moment My and the
maximum in-span beam moment (M), Similarly, the maximum-
column moment is obtained as the larger value of the column-end
moment Mg, and the maximum in-span column moment (M.)n... The
sign convention used in the figure is that a positive-bcam moment will
cause tension on the bottom fiber of the beam and a positive-column
moment will cause tension on the right-side fiber of the column.

Also shown in the figure are the maximum moments in the column as
predicted by the AISC approach [Eq. {3.4.27)], that is (M5 =0)

(anx)cnlumn = 1 _ P
F

0.6 —0.4Man/Mpa) u
- BA

= — MEA (3.11.32)

The lower dashed line is obtained by using an effective length factor
K =1 in calculating P, for the column while the upper dashed line is
obtained by using X = 0.839 (from alignment chart discussed in Chapter
4) in calculating P..

A number of observations regarding the behavior of the two-member
frame can be made from the figure.

1. As the applied column force P increases, the magnitude of the
maximum-column moment and the maximum-beam moment both
increase. Nevertheless, the locations of these maximum moments vary
as a function of P. The change is apparent when one refers to Eqgs.
(3.11.14) and (3.11.22). The location of the maximum in-span column
moment is given by

(3.11.33)

[\S]
&

[ %]
P
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The location of the maximum in-span beam moment is given by

—E_MBC_.L_‘ LI: J'ITZ.P/IS= ]

2 WL 2 83— 32VPIE cot (xVP/E) + (7°P/E.)
- (3.11.34)

In writing the above equation, the expression for Mgc given in Eq.
(3.11.27) with kL = aVP/P. is used. It should be noted that the
above expressions for x, and x,, are valid only if the calculated value
falls within the range 0 to L. If the calculated values fall outside this
specific range, the location of the maximum moment is at the end
rather than within the span of the member. Figure 3.38 shows a plot
of the variation of x, and x, nondimensionalized by the Iength of the
member L as a function of P/P.. For the column, the location of the
maximum moment shifts from the upper end to the middle of the

Xy

FIGURE 3.38 Variation of the location of the maximum beam and column
moments with P/P,
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FIGURE 3.32 Moment redistribution in the frame

member as P increases from 0 to P.. For the beam, the [ocation of the
maximum moment shifts from x, =0.562L at P=0 to x,=0.5L at
P=F.

2. The change in values in (anx)bcam’ (anx)columm and MBC 1mphe'5 that
the moment in the structure is being redistributed as the applied
column force P increases.’ This change in moment distribution is
revealed in Fig. 3.39 in which the bending moment diagrams for the
frame at various values of P/P. are shown. Note that there is a
reversal in moment at the joint as P/P, exceeds unity. In other words,
when P/F, <1, the beam is inducing moment to the column (Fig.
3.40a), however, as P/P.>1, the beam is restraining the column
against buckling (Fig. 3.40b). At P/F, =1, the beam end moment is
zero, indicating that the beam is neither inducing moment to the
column nor restraining it from buckling. It is also worth noting that as
P/P. exceeds unity, (Mua)beam/(WL?/8) will exceed unity, which
implies that if the designer is to rely on the beam to restrain the
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FIGURE 3.40 Beam-column ta} P <Py b)F>P,
interaction

column (that is, to design the column with a K-factor less than unity),
the beam must be designed to carry a maximum in-span moment that
exceeds wL?/8 (that is, the maximum moment of a simply supported
beam). This is in sharp contrast to the common notion that column-
end moments do not change in a braced frame because the Pé
moments are zero at the ends. This example clearly shows that this is
not true. Consequently, second-order effects will change beam mo-
ments as in unbraced frames. When P/P.=1.1, the beam moment is
1.12 x (wL?/8), which will require a larger beam cross section.

3. The AISC formula for the maximum strength of a column [Eq.
(3.4.27)] gives an excellent correlation to the exact result if an
effective length K = 0.839 is used to compute the critical load in the
magnification term (the upper dashed line in Fig. 3.37). If an effective
length K =1 is used, then the formula will underestimate the column
moment (the lower dashed line in Fig. 3.37).

From observations 2 and 3, it can be concluded that for braced frames
it is advisable to use an effective length factor K=1 in the first term of
the interaction equation [Eq. (3.10.4)] but not in the second term where
we should use an effective length factor K < 1.

3.12 SUMMARY

The general governing equation of an elastic prismatic beam-column is a
fourth-order linear differential equation relating the derivatives of the
lateral displcement y, the axial force P, and the transverse load w(x) in
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the form

Y 4 K =% (3.12.1)

where k*= P/EI The general solution to Eq. (3.12.1) is
y=Asinkx+ Bcoskx + Cx + D + f(x) (3.12.2)

If there are regions of constant transverse shear force V' in the member,
if may be more convenient to write the differential equation as

1%
"k = —— 3.12.3
y £l (3-12.3)
whose general solution is
y=Asinkx + B coskr + C+ f(x) (3.12.9)

Alternatively, one can draw a free-body diagram of a segment of
beam-column and equate the external moment to the internal moment to
obtain a second-order differential equation for a specific beam-column
with lateral loads and end moments producing the primary bending
moment M(x) at some general location distance x from the left support

" 2, — M(x)
y'+k EI (3.12.5)
whose general solution is

y=Asinkx + B cos kx + f(x) (3.12.6)

In Egs. (3.12.2), (3.12.4), and (3.12.6), f(x) is the particular solution
to the differential equations Eqgs. (3.12.1), (3.12.3), and (3.12.5),
respectively. The arbitrary constants (4, &, C, and D) can be obtained
by enforcing boundary conditions of the member.

For design purposes, it is often necessary to determine the maximum
deflection and maximum moment. The maximum deflection can be
obtained by setting y' = 0 to solve for x and then backsubstitute this into
the displacement function. The maximum moment can be obtained by
setting y" =0, solving for x, and then backsubstituting into the moment
expression. An exception to this is when the maximum moment occurs at
the end(s) of a fixed-ended beam-column. In this case, the fixed-end
moment(s) is (are) the maximum moment.

For simplicity and uniformity in a nonsway beam-column, it is often
possible to approximate the value of the maximum moment by an
expression in the simple form

Cu

m)MD (3.12.7)

Mmax = AFMD = (
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where

M,=maximum moment that would exist if the axial force in the
member were absent (also referred to as the first-order moment)

Ap=P — & moment amplification factor to reflect the effect of axial
force on magnifying the primary moment in the member

C,, = defined as follows:
1. For members subjected to transverse loadings

C.=1+wP/P, (3.12.8)

2. For members subjected to end moments only without trans-
verse loadings

Cp=0.6— 0.4(Ma/Mg) = 0.4 (3.12.9)

The limiting condition C_,=>0.4 has been removed in the
LRFD Specification.
P, = n*El{(KL)*
K = effective length factor

For members subjected to sidesway in an unbraced frame, in addition
to the P — & effect for an individual member (i.e., the effect of the axial
force acting through the lateral displacement of the member relative to its
chord), there is a P — A effect resulting from the frame sidesway action
(i.e., the effect of the axial force acting through the sway of the member).
Treatment of the P— A effect for a member in a frame is not as
straightforward as the P — § effect for an individual member only. The
AISC/ASD and /PD Specifications account for both the P— dand P — A
effects indiscriminately by using C,=0.85 in Eq. (3.12.7) in design.
However, the AISC/LRFD Specification accounts for these effects
separately by first decomposing the first-order moment M into a nonsway
and sway component, designated as M, and M,, respectively. The
nonsway component M, is multiplied by P— & moment amplification
factor B,(=Ag) to account for the P — & efiect, and the sway component
M, is multiplied by a P — A moment amplification factor B, to account
for the P— A effect. The maximum moment is then obtained as an
algebraic sum of the two amplified moments

Meax = BiMp + B M, (3.12.10)

This approach usually leads to conservative results, since the maximum
secondary P — é moment and the maximum secondary P — A moment do
not necessarily coincide at the same location. Nevertheless, this is a more
rational approach than the AISC/ASD and /PD approaches, in which the
total first-order moment is magnified by the factor 0.85/(1— P/Py),
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because, in many cases, a larger percentage of the nonsway moment is
not affected by the P — A effect.

The design of the beam-columns is facilitated by the use of interaction
equations. These are equations that relate a combination of axial force
and moments that will initiate the fajlure of a beam-column. They
generally give good approximations to the more exact interaction curves
developed on the basis of an inelastic analysis. Since inelastic beam-
column analysis is rather complicated, interaction equations provide an
attractive alternative for designers. The design of beam-columns in
various interaction formats as provided by the current AISC Specifica-
tions is discussed in Sec. 3.10.

PROBLEMS

3.1 Use the design amplification factor for the lateral deflection yn.. in Eq.
(3.2.35) to derive the design moment amplification factor for the moment
Mo In Eq. (3.2.41).

3.2 Use the four conditions (3.3.5) to (3.3.8) to determine the four constants
A, B, C, and D as given in Egs. (3.3.9) to (3.3.12).

3.3 Using L’'Hospital's rule, show that the stability functions in Egs. (3.7.15)
and (3.7.16) reduce to 5, =4 and s;; =2 when P =10.

3.4 Derive the expressions for the maximum deflection and maximum moments
for the beam-columns shown in Figs. P3.4a,b. Using
a. General Differential Equation
b. Principle of Superposition
Determine the value of y if the expression

= 1
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FIGURE P3.4 b1
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is used to approximate the fixed-end moment where P, = 7*EI/(KL)* and
M, = fixed-end moment that would exist in the member if P were absent
(first-order moment).

3.5 Using the deflection function given in Eq. (3.3.13a, b) for the beam-column
shown in Fig. P3.5a, formulate the expression for the deflection y for the
beam-columns shown in Fig. P3.5b-d by the principle of superposition.

o
P f P x
Faun El=constant { gﬁif;
R a
!
\ L -
!
y (a)
Q Q
: | s
A ElI=constant| i
‘ L/3 | L/3 ‘ L/3 ‘4
[ { |
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w E
L |
P. ; P X
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‘ L/3 L/3 Lf3 ‘
i i H 1
|
y (c)
Q
w
P ’m P X
7y EI=constant ;ﬁ;
s L wus e |
‘ 1
| | 1
y (d}

FIGURE P3.5
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3.6 For the beam-column subjected to end-moments M, and My as shown in
Fig. P3.6, find the elastic maximum moment for P/P.=0.4 if
a, M./My=0.4
b, M /My=10
€ Mi/My=-04
Where is the location of M_..?

My

7

L.
FIGURE P3.6 [ |

3.7 Find the fixed-end forces Mp, and My for the beam-column shown in Fig.
P3.7.

- |
(S S EE

g
Mey

FIGURE P3.7

3.8 Find the design moments for the columns of the frame shown in Fig. P3.8
using the AISC’s (a) ASD approach, (b} PD approach, and (c¢) LRFD

approach.
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versus P/P,, where P is the axial force in the column and P. is the critical
load of the column for column DE of the frame shown in Fig. P3.8. What
observation do you draw?

3.10 Find the fixed-ended moments My, and Mg for the unsymmetrically loaded
beam-column shown as Case 3 in Table 3.8.

3.11 Determine the exact C, factor for the beam-column shown in Fig. 3.33(b).

3.12 Using the slope deflection Eqs. (3.8.1) and (3.8.2), determine the critical
load of the frame shown in Fig. 3.33(a).

3.13 Find the design moments for the structure shown in Fig. P.3.13 using the

LRFD method.
.2P
|
P ¢ .0
2E1,
L
Ele Elg
A E
' |
| L2 | L N
FIGURE P3.13 r‘ ] |

3.14 For the design of a beam-column in a steel frame, list the important
differences between LRFD and ASD Specifications.
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Chapter 4

RIGID FRAMES

4.1 INTRODUCTION

In the preceding chapters, we have dealt only with isolared members with
idealized end conditions (hinged, fixed, or guided). In reality, most
structural members are connected to other members to form a frame-
work. As a result, the behavior of these members will be affected by their
adjacent members in the structure. For example, if a column in a
framework buckles, its ends will rotate. This will cause rotations of
adjacent members that are connected to the column, which in turn will
cause deformations to other adjacent members. Thus, to determine the
critical load of the coluomn in a frame, it is necessary to investigate the
stability of the frame as a whole.

If the frame is geometrically perfect and if the loadings are such that no
primary bending moments are present in the members before buckling,
then a frame’s critical load can be obtained by an eigenvalue analysis
done in a manner similar to that used for an individual member. Such a
frame is shown in Fig. 4.1a, where the columns are perfectly straight and
the loads are applied concentrically with the centroidal axes of the
columns. The load-deflection behavior of the frame is shown in Fig. 4.2
as curve 1, and its critical load is designated as P, in the figure. Note
that there is no bending deformations and so no bending moments in the
members until P, is reached. Once the critical load P, is reached, a slight
disturbance will induce large lateral deflections of the members.

If the columns are geometrically imperfect (Fig. 4.1b), or if the
primary bending moments are present before buckling because of
eccentricities of the applied loads (Fig. 4.1c), lateral deflections will occur
as soon as the loads are applied. The efastic load-deflection behavior, as

236
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FIGURE 4.1 Simple braced portal frames

represented by curve 2 in Fig. 4.2, will be nonlinear because of the
presence of secondary effects (P-0 and P-A effects), and the curve will
approach its maximum or critical value P, asymptotically. o

The elastic critical load P, can be reached only if the stresses in all
members fall below the proportional or elastic limit of the stress—strain
diagram of the material. Under this condition, failure of the frame is due
solely to elastic instability. On the other extreme, if instability is excluded
as a failure mode and material yielding or plasticity is the only factor
accounted for in the failure analysis, failure of the frame will occur as a
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FIGURE 4.2 Load-deflection behavior of frames

result of the formation of a collapse mechanism when sufficient plastic
hinges have developed in the structure. In this case, the rigid plastic
collapse lpad P, (Fig. 4.2, curve 3) rather than the elastic critical load P,
will govern the limit state of the frame.

In many instances, the stability and plastic mechanism behavior of the
frame will interact with each other and the true failure load P, of the
frame (Fig. 4.2, curve 4) is neither controlled by the elastic critical load,
F.., nor the plastic mechanism load, P,. To determine this failure load, P,
a complete elasfic—plastic analysis of the structure is often necessary. The
rigarous analytical determination of the failure load F; is generally very
complex, and the amount of work involved does not justify its deter-
mination by the rigorous means for design applications. Fortunately, an
approximate value of F; can be obtained easily and directly, once the
extreme values of P and F, are known. This approximate method will be
presented in the later part of this chapter. The approximate determina-
tion of the failure load £ is usually enough for design purposes.

In the first part of this chapter, we will present three methods for the
determination of the elastic critical load F.: (1) the differential equation
method, (2) the slope-deflection equation method, and (3) the matrix
stiffness method. All these methods employ the concept of neutral
equilibrium in which the critical load of the frame is obtained as the
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eigenvalue of the system of equations generated by enforcing equilibrium
and compatibility conditions of all members and joints in the structural
system,

Toward the end of this chapter, we will give a simple method making
use of the virtual work principle for the determination of the rigid plastic
collapse load P,. This will be followed by the presentation of a simple
interaction equation making use of P, and P, to estimate the true failure
load F; of the frame.

To conclude the chapter, we will discuss the effective length factor K as
recommended by the AISC Specification for the design of members in a
framed structure (references 7 and 8 in Chapter 3).

4.2 ELASTIC CRITICAL LOADS BY DIFFERENTIAL
EQUATION METHCD

This section deals with the determination of the elastic critical load P.. of
frames. Since the critical load for a given frame is different depending on
whether the frame is braced (sway prevented case) or unbraced (sway
permitted case), we will discuss these two cases separately.

4.2.1 Sway-Prevented Case

Figure 4.3a shows a pin-ended portal frame braced against sidesway and
loaded by two points loads P, one on each column. We will now evaluate
the critical load of this frame. The subscripts b and c designate beam and
column, respectively.

Because of symmetry, we need only to consider half of the structure.
Referring to Fig. 4.3b, we see that the differential equation for the
column is

M
ELy"!+ Py, = LB x (4.2.1)
ar
o A’IB X
"k, =2 422

yC + k(‘yc Elc Lc ( )

where k2= P/EL.

The general solution is
M -

yo= Asinkex + B cos kox + = Li (4.2.3)

Using the boundary conditions of
y(0)=0,  y{L)=0 (4.2.4)
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FIGURE 4.3 Nonsway buckling of a pinned-based portal frame

results in

My
Psink,L.

B=0 (4.2.6)

Therefore, the deflection function for the column, Eq. (4.2.3), can be
written as

A= (4.2.5)

Mg /x. sinka,

Ye="p (z‘—sm kch) (4.2.7)
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from which
.My (i k. cos kcxc)
=P \L. sink.L, (4.2.8)
and
I MB ( 1 kc )
(L)y=—|—— 4.2,
Yl =5 \ "tk (42.9)

For the beam, the effect of axial force on the behavior of the member
is usually negligible (Fig. 4.3b). Therefore, the differential equation has
the simple form

Elyye =My (4.2.10)
or
My
b= 4.2.1
Yo El, ( 1)
The general solution is
My xt
=Cx,+D+—= 2,12
Yp=Lx, El 2 (4 )
Using the boundary conditions of
¥(0) =0, Yo(Lp)=10 (4.2.13)
results in
—MsL,
=—F— 4.2.14
2Ef, ( )
D=0 (4.2.15)

Therefore, the deflection function for the beam, Eq. (4.2.12), can be
written as

-M,
yb=flf(beh—xa) (4.2.16)
from which
_MB
| = — 4.2,
MylL,
L) = 42.18
O == (42.18)

The joint compatibility requires
Ye(Le) = y(0) (4.2.19)
Upon substituting Egs. (4.2.9) and (4.2.18) into the joint compatibility
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equation (4.2.19), we have

My ( 1 k. ) —MgL,
e _ = 4.2.20
P \L. tank.L. 2EL, ( )
or, rearranging and denoting ki = P/EL,
kiL, 1 k. )
+—- Mg=0 4.2.21
( 2 L, tank,JL., ° ( )

At bifurcation, Mg increases without bound. For Eq. (4.2.21) to be
valid, the term in the parenthesis must be zero, i.e.,

szlJ 1 kc

2 L. tank.L. =0

(4.2.22)

or
kil L. tank.L.+2tank.L,—2k.L.=0 (4.2.23)

Equation (4.2.23) is the characteristic equation of the frame buckled in
the nonsway mode. The eigenvalue determined from this equation is the
critical load of the frame.

For simplicity, if we take L, = L. = L and k, = k. = k, we can write the
characteristic equation as

(kLY*tan kL +2tan kL —2kL =0 (4.2.24)

By trial and error or by graphical means, the solution of Eq. (4.2.24) is
found to be

kL =3.59 (4.2.25)
Since
kL=(VP/ENL (4.2.26)
we have
(VP/EDL=13.59 . (4.2.27)
or

Ef El
P, =(3.59) I 12.9 12

Before we proceed to the sway-permitted case, we shall examine the
two extreme cases of P, as expressed in Eq. (4.2.28). On one extreme, if
the bending stiffness of the beam approaches zero (Fig. 4.4a), the two
columns will behave like a hinged-hinged member and the critical load is
m*ElI/L*(=9.87EI{L?). On the other extreme, if the stiffness of the
beam approaches infinity (Fig. 4.4b), the columns will behave like a
hinged-fixed member and the critical load is 20.1EI/L? Thus, in the
present case the lower bound for P, is 9.87EI/L* and the upper bound is
20.1EI/L* The actual value for P, for the frame with a finite beam
stiffness should fall between these two extreme values as Eq. (4.2.28)
does.

(4.2.28)
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2
P, =9.87EL/L

2
rcr=9.stI/L
I

(a)

2
P, =20.1EL/L

1
|
1
J
|
|
{
|
iy

2
P-20.1EL/L

{b)

FIGURE 4.4 Extreme values of P,

4.2.2 Sway-Permitted Case

If the frame shown in Fig. 4.3a is not braced against sidesway, it may
buckle in a sway mode at a lower buckling load level, as shown in Fig.
4.5a. Because of antisymmetry, only half of the structure needs to be
considered (Fig. 4.5b). Note that the herizontal reaction H at the column
base is zero, since there is no external horizontal force acting on the
frame. Assuming that the applied load P is much greater than the beam
shear force 2My/L,, it follows that the axial force in the column can be
approximately taken as P. As a result, the differential equation for the
column can be written as

Elyc+ Py.=0

it
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(4.2.29)
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FIGURE 4.5 Sway buckling of a pinned-based portal frame
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Introducing the notation k2= P/FEI,, we can write Eq. (4.2.29) as

The general solution is

y.=Asinkx. + Bcosk.x.

Using the boundary conditions
- »0)=0,

ye+ k=0

the two constants can be evaluated as

A

" sin k L.
B=0

y(L)=4A

(4.2.30)

(4.2.31)

(4.2.32)

(4.2.33)

(4.2,34)
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Therefore, the column’s lateral deflection can be expressed in terms of
the sway deflection A of the frame as

= in k.x, 4.2.35
Ye= Gnk L, S0 ke (4.2.35)
From equilibrium consideration of the column, we have
Mg =PA (4.2.36)
from which we obtain the sway deflection
My
A=— 2.37
- (4.2.37)

Upon substituting Eq. (4.2.37) into Eg. (4.2.35), we obtain the
deflection function of the column as

My
Yo Psin koL, e (34:2.38)
from which
: chB
Y= Peink L, 0 kere (4.2.39)
and
, k.M,
V@) =gt T (4.2.40)
The differential equation for the beam is
M
ElLy;= LbB Xy — My (4.2.41)
or
Mg (2x
yh= ET? (L—: ~ 1) (4.2.42)
The general solution is
Mg ( xi xf,)
= +D+—{——-= 4.2.43
W="Cxy EL\3L, 2 ( )
Using the boundary conditions
Ly
wO=0,  5(3)=0 (4.2.49)
the two constants can be evaluated as
MgL
C= G?E—; (4.2.45)

D=0 (4.2.46)
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Substituting Eqs. (4.2.45) and (4.2.46) into Eq. (4.2.43) gives the
deflection function of the beam as

MLy My ( X -’-’\2:)
= +—= ——= 4.2.47
Y= 6ElL, ° T EL\3L, 2 (4.2.47)
from which
, _MgL, Mg (x% )
= +—=—= 4.2.4
Yo=6EL T EIL AL, (4.2.48)
and
ML,
() =——+- .2.49
=", (4:2.49)
Joint compatibility at B requires that
ye(Le) = yu(0) (4.2.50)
or, using Eq. (4.2.40) and Eq. (4.2.49), we obtain
kMg MyLy
— == 251
Ptank.L. ©6FEl, 4 )
or
kc Lb )
- Mg=10 2.
(P tank L. 6EL/ ° (4.2.52)

At the bifurcation load, M, increases without bound. To ensure the
validity of Eq. (4.2.52), we must have

k. L, _
Ptank,L. 6EL

0 (4.2.53)

or
6k L.— kil,L.tank . L.=0 (4.2.54)

where ki = P/El,.

Equation (4.2.54) is the characteristic equation of the frame buckled in
the sway mode. For the special case for which Ly=L. =L and
ky=k.=k, Eq. (4.2.54) reduces to

6kL — (kL)*tan kL = 0 (4.2.55)
from which kL can be evaluated as
kL =(VP/ENL =135 - (4.2.56)
and so
L Bl El
P = (1.35)‘E= 1.821—’_‘—2 (4.2.57)

Again, we shall examine the two extreme cases of F.; as expressed in Eq.
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FIGURE 4.6 Extreme values of P

(4.2.57). If the bending stiffness of the beam approaches zero (Fig. 4.6a),
the two columns do not possess any sway stiffness and the critical load is
zero. If the bending stifiness of the beam approaches infinity, the two
columns act like a hinped-guided member and the critical load is
2.47EI/L* The critical load as expressed in Eq. (4.2.57) does fall
between these two extreme cases of O and 2.47E1/ L2,

Note that P, for the sway-permitted case is much less than that of the
sway-prevented case; the frame will undoubtedly buckle on the sway
mode if no physical constraint is provided to prevent the frame from
sidesway buckling.

The differential equation method described above can be extended to a
more complex frame. A differential equation is written for each and
every member of the frame. The arbitrary constants of the general
solution to each differential equation solution are then evaluated using
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the boundary conditions and joint compatibility conditions of each
member and each joint from which the charactersitic equation of the
frame can be obtained. The eigenvalue of this characteristic equation will
give the critical load of the frame.

Although the differential equation method can, in theory, be used to
determine P, for all types of frames, the actual implementation of the
method for the solution of a given frame is rather complex, especially
when it is applied to frames of more than one story and one bay.
Fortunately, there is a simpler method available, which makes use of the
slope-deflection equations' developed in the previous chapter. This will
be discussed in the following section.

4.3 ELASTIC CRITICAL LOADS BY SLOPE-DEFLECTION
EQUATION METHOD

In the slope-deflection equation method, the slope-deflection equations
developed in Sections 3.7 and 3.8 are written for each and every member
of the frame. These equations are then related to one another by
enforcing moment equilibrium at the joints (for braced frames) or by
enforcing moment equilibrium at the joints and story shear equilibrium
for every story of the frame (for unbraced frames). The characteristic
equation is obtained by setting the determinant of the coefficient matrix
of the resulting set of equilibrium equations equal to zero. The critical
load is then obtained as the eigenvalue of the characteristic equation. To
demonstrate the use of this approach, we will reanalyze the braced and
unbraced frames shown in Figs. 4.3a and 4.5a using the slope-deflection
equation approach. Note that because of symmetry and antisymmetry,
only half of the structure needs to be considered in the analysis.

4.3.1 Sway-Prevented Case

For this case, there is no relative lateral translation between the ends of
the column; therefore, by using Eq. (3.8.5), the slope-deflection equation
for the column (Fig. 4.7a) can be written as

Mpa=— (Siic - S_L) fn (4.3.1)
L.
in which the subscript ¢ denotes the column, and in which expressions for
5; and s;; are given in Eqs. (3.7.15) and (3.7.16), respectively.
Since the beam is bent in a single curvature, we use the slope-
deflection equation (3.8.15) for the beam
ElL
Mpe= L_b (5w — Sijb)BB (4.3.2)

b

lc

in which the subscript b denotes the beam.



4.3 Elastic Critical Loads by Slope-Deflection Equation Methad 249

\ e
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\—// {a} (b)

Mas -0

FIGURE 4.7 Slope-deflection equation approach for P, of nonsway buckling of
simple portal frame

Neglecting the effect of axial force on the bending stiffness of the
beam, we can set sy, = 4 and s;, = 2, so that Eq. (4.3.2) becomes

2E],
MBC=T—" Ay 4.3.3)
b

From joint equilibrium (Fig. 4.7b), we must have
MBA +MBC=O (4.3.4)

Using Egs. (4.3.1) and (4.3.3), the joint equilibrium condition ex-
pressed in Eq. (4.3.4) can be written as

EL s 2E1,

= (sﬁc—?‘c)aﬁ +5760=0 4.3.5)

or
El sic) 2E1b]
—{Sic—— 1 +—|Op= 3.

[ > (s )40 8 =0 (4.3.6)
Since at bifurcation, 45 # 0, we must have
El. sty 2L

L. (Siic—siic) + L =0 4.3.7)

Equation (4.3.7) is the characteristic equation of the frame. For the
special case for which I, =1, =Tand L,=L.= L, Eq. (4.3.7) becomes

EI z
T [Siic_ijc—" 2i| =0 (4.3.8)
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or
Sfie
Sﬁc“'_+2=0 (4.3.9)

e

By trial and error and using Table 3.7, the value of kL that satisfies
Eq. (4.3.9) is found to be

kL =(VP/{ENL =3.59 (4.3.10)
from which the critical load
EI
P.= 12.922- (4.3.11)

is obtained. This load is the same as before using the differential equation
appraach.

4.3.2 Sway-Permitted Case

Referring to Fig. 4.8a, we see that the slope-deflection equations (3.8.1)
and (3.8.2) for the swayed column are

El, A
Map=— \:SiiceA + 5388 — (e + Siie) —] =0 (4.3.12)
L, L.
EL A
Mpp=—— [SichA + SiicBn — (Siie T Sijc) __] (4.3.13)
L, L. ,
Solving Eq. (4.3.12) for 8, and substituting &, into Eq. (4,-5-13% we
obtain
=g Ty gy — {5, — ) — 3
Mpa T [(Su: 5. Siie )L (4.3.14)

Since the beam is bent in double curvature, we use the slope-deflection
equation (3.8.17) for the beam
El,
Ly
Because there is no axial force in the beam, we set s, = 4 and 55, =2,
or

MBC= (Sjib+Sjjb)eB (4.3.15)

6E
Mge =—Lﬁ 05 (4.3.16)
b

From joint equilibrium (Fig. 4.8b), we know
Mpa + Mpc=0 (4.3.17)
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FIGURE 4.8 Slope-deflection equation approach for F, of sway buckling of
simple portal frame

Using Eqs. (4.3.14) and (4.3.16), the joint equilibrium condition
(4.3.17) becomes

El Sie st Al 6EL
L: [(Siic_'t)BB‘_ (Siic_x) Z:l + bBB=0 (4.3-18)

or

Ly
2 2
Sije Ich) ( Sijc) A
iic__+6— B — - — —=0 4.3.
(S Fiic LLy ® : Sic/ Le ( 3 19)
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From story shear equilibrium (Fig. 4.8c), we have

0 4.3.20
L. I ( )
Realizing that
and
MCD = MBA (antisymmetry) (4322)
we can write the story-shear equilibrium equation (4.3.20) as
2Mpa + 2PA
—EA = -0 (4.3.23)
L.
or
Mpat PA_ 0 (4.3.24)
L
Using Eq. (4.3.14) for My, in Eq. (4.3.24), we can write
El s?,-c) ( s?,-,:) A] PA
= sue——F 0 — (S ——— ) — = 4.3,
L: [(s"c Siic O~ S Siic/ Lie " L. 0 (4.3.25)
or
S%c) ( S?IC kz 2) A
te— =L )0g — (S ——=— K22} —=0 4.3.26
(S“ Fiic AN Fiic L. ( )

Equations (4.3.19) and (4.3.26) are the two equilibrium equations of
the frame, they can be written in matrix form

LL, 6
S%I"L" ’ L3 =(g) 4.3.27
S —S + (kL) [\ L. (4.3.27)

where
2
Sijc
S =8 ——

Note that the cocfficient matrix in Eq. (4.3.27) can be made symmetric

by multiplying Eq. (4.3.26) by minus one. If we do this, and zlso let
Ih=L=1Iand L,=L.=1L, Eq. (4.3.27) becomes

[S+6 -5 }

s s- gLy —(0) (4.3.28)

I P
|

At bifurcation, both 8z and A increase without bound. For Eg.
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(4.3.28) to be valid, we must set

S5+6 =S

s s—wepl =0 (4.3.29)

det

Equation (4.3.29) is the characteristic equation of the frame. By trial
and error and by using Table 3.7, the value kL can be found to be

kL=(VP/ENDL=135 (4.3.30)
from which the critical load can be solved
El

P = I.SZF (4.3.31)

Note the correspondence of Eq. (4.3.31) obtained using the slope-
deflection mtethod with Eg. (4.2.57) obtained previously using the
differential equation method.

The slope-deflection equation method, as in the differential equation
method, can in theory, be extended to evaluate F. for all types of
frames. The resulting coefficient matrix obtained by enforcing joint (and
story-shear) equilibrium will be an n X » matrix in which » is the number
of independent degrees of freedom of the frame. However, if # is large, it
is cumbersome to obtain a solution. In the next section, the slope-
deflection equation method will be generalized; the resulting formulation
we will see is called the matrix stiffness method.>® This procedure to
abtain solutions for large frames can be greatly enhanced by the use of
camputers.

4.4 ELASTIC CRITICAL LOADS BY MATRIX STIFFNESS METHOD

In the matrix stiffness method, the element stiffness matrix that relates
the element end forces to end displacements is first formulated for each
and every member of the frame. These element stiffness matrices are
then assembled into the strueture stiffness matrix that relates the
structure nodal force to the structure nodal displacements. At bifurea-
tion, the stiffness of the structure vanishes. Therefore, by setting the
determinant of the structure stiffness matrix to zero, the critical load of
the frame can be obtained.

4.4.1 Element Stifiness Formufation

We shall begin our discussion of the matrix stiffness method by
developing the element stiffness matrix from the slope-deflection equa-
tion. Figure 4.9a shows the sign convention for the positive directions of
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element end forces and end displacements of a frame member. The end
forces and end displacements used in the slope-deflection equation are
shown in Fig. 4.9b. By comparing the two figures, we can easily express

the following equilibrium and kinematic relationships.

Equilibrium
n=>r
M,+ M
= —V=— AL B
r3=MA
r4—_P
M, + My
s = L
rﬁ=MB
Kinematic
e=—(dy—dy)
ds—d
9A=d3+( I 2)
ds—d
93=d6+( SL 2)

(4.4.1)
(4.4.2)

(4.4.3)
(4.4.4)

(4.4.5)

(4.4.6)

(4.4.7)

(4.4.8)

(4.4.9)
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Equations (4.4.1) to (4.4.6) can be written in matrix form as

r [~ 1 0 07
1 1
"2 " T L
P
N T 0 (4.4.10)
1 1 My
s O 7T I
Ts L 0 0 14
Similarly, Egs. (4.7) to (4.4.9) can be written in matrix form as
[ h dl
1 -1
0 0 0 0 Iy
‘ 1 1 d
B4 = -~ 1 0 = 0 3 4.4.11
BA 0 2 I 4, ( )
’ 0o Lo ol s
.. L L 1 \d

Equation (4.4.10) and Eq. (4.4.11) can be related by recognizing that
EA

P=— 4,412

A (“4.12)
Ef

M, = T (5464 +5;08) (4.4.13)
ET

MB=Z‘ (5i;0a +5:i98) (4.4.14)

Equation (4.4.12) relates the axial force P to the axial displacement e
of the member, Egs. (4.4.13) and (4.4.14) are the slope-deflection
equations of the member, and sy, s;; are the stability functions. In writing
Eq. (4.4.12), it is tacitly assumed that the effect of member shortening
due to the bending curvature is negligible. This assumption is satisfactory
for most practical purposes.

Putting Eqgs. (4.4.12) to (4.4.14) in matrix form, we have

P &I ? G 0 e
Ma | =22 0, (4.4.15)
M Lla 85 Oy 0
8 0 s Sii &
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Substituting Eq. (4.4.15) inio Eq. (4.4.10), and then substituting Eq.
(4.4.11) into the resulting equation, we can relate the element end forces
(r, to rg) with the element end displacements (d, to d;) as

A A
T 0 ¢ -7 0 1]
n 2055 '1‘ s) (it 0 _Z(Sii;" sy)  —fm ) d,
. L L 17 L p
2 2
3 - 2 S i) @ sii d:!
I L L d,
rs A dy
. - 1] 0
f ns R I dﬂ
205 + 533} (55 + 555
L2 L
l_ Sii -l N5
(4.4.16)
Symbolically, Eq. (4.4.16) can be written as
l.l'l.'i = knﬁd (4-4.17)

where the subscript ns is used here to indicate that there is no sidesway
in the member. 1f the member is permitted to sway as shown in Fig. 4.10,
an additional shear force equal to P A/L will be induced in the member
due to the swaying of the member by an amount A given by

A=d,-ds (4.4.18)

We can relate this additional shear force due to member sway to the
member end displacement as

C 0 0 0 0 0

n P P d

-—— 0 0 - 0 1
r L L ds
5 _ 0 O 0 0 d3
ry 0 0 d, (4.4.19)
s p ds
rs . sym ar 0 dg

i o,

or symbolically
r. = ked (4.4.20)
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where the subscript s is used to indicate the quantities due to sidesway of

the member.

By combining Eq. (4.4.17) and Eq. (4.4.20), we obtain the gcneral
beam-column element force-displacement relationship as

r=kd (4.4.21)
where
E=r,+r (4.4.22a)
k=k, +k, (4.4.22b)
[A A 7
| -I- 0 0 — 7 0 0
Z(Sij + Sij) - (kL)z _ (‘gii + Sij) O _2(.5',1 + S,-J-) + (kl;)2 _(S" + sif)
L? L L? L
Er S5+ 85
= Z S 0 T‘ 8
A
sym. 7 0 0
2si +53) — (kLY (55 +5y)
L? L
| Sy .J
(4.4.23)

Substituting the expressions for the stability functions (s;,s;;) in Eq.

(4.4.23) and simplifying, we obtain

A A
7 0 0 1
12 -6
Iz Py T ¢, 0
=2 )
T
Sym.

_(pl.

12
%

(4.4.24)

The expressions for ¢,, ¢, ¢3, and ¢, are given in Table 4.1. Note
that as P approaches zero, the functions ¢,, ¢,, ¢, and ¢, become
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el
-

FIGURE 4,10 Additional shear due to swaying of the member

indefinite. However, by using the L"Hospital’s rule, it can be shown that
these functions will approach unity and Eq. (4.4.24) reduces to the
first-order (linear) element stiffness matrix for a frame member.

Also shown in Table 4.1 are the ¢; functions expressed in the form of a
power series by using the following series expansion for the trigonometric
functions;

For compression
(KLY (KLY

inkL=kL ——— . 4.
sink kL 6 + 50 + (4.4.253)
kL (kL)
= —— — av e . -2
cosklL=1 > + + (4.4.25b)

For tension

(kL) | (L)

inhAL=kL+-—=—+
sin 6 120 (4.4.26a)
kL (kL)'
cosh kL=1+—2—+(2—4)+ cee {(4.4.26b)

It has been shown® that these power series expressions are convenient
and efficient to use in a computer-aided analysis because no numerical
difficulties will arise even if the axial force P is small. In addition, the
expressions in the series are the same regardless of whether P is tensile or
compressive. For most cases, the series will converge to a high degree of
accuracy if n = 10 is used.

If the axial force in the member is small, Eq. (4.4.24) can be simplified
by using a Taylor series expansion for the ¢;’s. If we retain only the first
two terms in the Taylor series, it can be shown that the resulting stiffness
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Table 4.1 Expressions for ¢, ¢, ¢, and ¢,

¢ I
Compressive Zera Tensile

@ (kL) sin kL . {(kL)®sinh kL
! 12¢, 12¢,

p (kL)*(1 —ens ki) . (kL) {cosh kL — 1)
: Bibe 6¢,

¢ (kL)(sin kL — kL cos kL) 1 (kL){kL cosh kL —sinh kL)
’ 49, ¢,

p (KL)(kL —sin kL) . (kL)(sinh kL — kL)
! 2¢. 2¢,

where
¢ =2—2coskL —kLsinkL ¢=2—2coshkL + kL sinh kL

Alternatively, the ¢ functions can be expressed in the form of PpOWer series, as
in reference 4:

TR S E

a=1(2n + 1}!
$, = 120
@ 1 .
2t Iy [FOLYT
= 6
= 2 1
B itz (2(:: 3))! [FCLYT
;= 0
T i An
o= o n=1(2n + 3! [FLY]
4= 20
where
= 2 1 .
b=+ 3 2L LT

Use the minus sign if the axial force is compressive.
Use the plus sign if the axial foree is tensile.
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matrix that is valid for small axial force is given by

r 10 w
A A
= 0 -= 0 0
7 0 i 0 0 0 0 0 0
E :E 0 —12 __6 E __L 0 __6 —L
L L L* L 5 10 5 10
6 207 L —-1?
k=EII LA A e i 5 0 1 30
A
= 0 0
T 0 0 0
2 s 6 L
L’ L 5 10
212
4 =
B i 5 15 |
(4.4.27)

in which the negative sign preceding the second matrix corresponds to a
compressive axial force and the positive sign corresponds to a tensile
axial force.

Symbaolically, Eq. (4.4.27) can be written as

k=ko+kg (4.4.28)

where ky is the first-order (linear) elastic stiffness matrix and kg is the
geometric stiffness matrix (sometimes referred to as the imitial stress
stiffness matrix), which accounts for the effect of the axial force P on the
bending stiffness of the member.

The following example will be used to demonstrate the procedure of
using the stiffness matrix method to obtain the critical load of frames.

4.4.2 Sway Buckling of a Pinned-Base Portal Frame

The matrix stiffness method is applied here to determine the critical load
P, for the frame shown in Fig. 4.5a. Because of symmetry, we consider
only one half of the structure in the analysis. This is shown in Fig. 4.11a
together with the structural nodal forces and displacements. To reduce
the number of degrees of freedom of the structure, we assume that all
members are inextensible (i.e., the change in length due to axial force is
neglected). As a result, only four degrees of freedom, are labeled: three
rotational degrees of freedom, D,;, D,, and D,, and one translational
degree of freedom, D,. The corresponding structural nodal forces,
R,,...,Ry, are also shown in Fig. 4.1la. The directions of these
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FIGURE 4.11 Structure
member forces
ments notations

and
and displace-

rotations, translations, and forces are shown in their positive sense in the

figure.

Because of the assumption of inextensional behavior, the axial
force-axial displacement relationship expressed in Eq. (4.4.12) is not
valid anymore. As a consequence, the 6 X6 element stiffness matrix
relating the element end forces to the element end displacements will be
reduced to a 4 X 4 matrix as

26 1
L? L L’
6
4 -
L
12
symi. Iz

_§]

L

b

e

=S
| I

e

L

10

—
Ll gn

sym.

(4.4.29)
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This stiffness matrix relates the four end forces (r, s, 15, and rg) to the
four end displacements (d, ds, ds, and dg) of an inextensible member.
Note that the element stiffness matrix for an inextensible member [Eq.
(4.4.29)] is obtained simply by deleting the first and fourth rows and the
first and fourth columns from the element stiffness matrix for an
extensible member {Eq. (4.4.27)].

Figure 4.11b shows the four degrees of freedom (d;, 45, d5, and dy)
and the corresponding end forces (r, 15, 15, and rg) associated with each
member of the structure. Again, the directions are shown in their positive
sense in the figure.

By using Eq. (4.4.25), the element stiffness matrix for the column
{(element 1) can be written as

12 -6 -12 —6] "6 —L —6 ~-L]
2 L 1* L 5 10 5 10
. S, 2w Lol
k1=£I L P 15 10 30 (4.4.30)
L o6 L § L
sym. L2 L Sym- 5 10
212
i ‘1L T

and the element stiffness matrix for beam with P=0 and £./2 for L
(element 2) can be written as

48 —12 —48 —127]
L2 L L2 L
12

4 2
k.= 2% L (4.4.31)
48 12
SYIIL. IE

L
_ s
The structure stiffness matrix can be obtained by assembling these
element stiffness matrices. The process of assemblage is described in
detail in most matrix structural analysis textbooks.”™’ So we will discuss it
only very briefly here.
For each element, the element end displacements are first related to

the structure nodal displacements by consideration of joint compatibility.
It can easily be seen from Fig. 4.11 that for element 1, this kinematic
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relationship is

d 0 ¢ 01 Dy
d;] 10 100 D,
4] =000 o D, (4.4.32)
d(, 1 1 0 U 0 1 D4
For element 2, the kinematic relationship is
d» 0 00 Q¢ D,
ds 0100 D,
4| ={o 00 o0 D, (d.4.33)
dg/ 2 ¢ 01 0]2\D,

Symbolically, Eqs. (4.4.32) and (4.4.33) can be written respectively as

d] = T1D (4.4.34)
d, = T,D (4.4.35)

On the other hand, the portion of the structure nodal forces resisted by
element 1 is

R, 000 17/n
R\ o100 n
r|=loooolln (4.4.36)
R,/ [1 0 0 0|\r/

and the portion of the structural nodal force resisted by element 2 is

Rl 0 0 O 0 rz
R, 010 0ffn

= 4.4.37
R, 000 1llxg (4.4.37)
R4 2 0 ¢ ¢ 0 e/ 2

By comparing Eq. (4.4.36) with Eq. (4.4.32) and Eq. (4.4.37) with Eq.
(4.4.33), it can be seen that the matrix relating the structure nodal forces
R's to the element end forces r's is the transposition of the matrix relating
the element end displacements 4’s to the structure nodal displacements
D's. This observation is not a coincidence, but represents a theory in
structural analysis known as the contragradient law.”
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In view of the above observation, Eqs. (4.4.36) and (4.4.37) can be
written symbolically as
R, =T, (4.4.38)
R2 = Tg | o] (4.4.39)
From consideration of joint equilibrium, we can write

R=R,+R, (4.4.40)

Substituting the member equilibrium relationships Eqs. (4.4.38) and
(4.4.39) into Eq. (4.4.40) gives

R=T{r, +Tir, (4.4.41)
Since, from Eqg. (4.4.21) the element force-displacement relationship

for elements 1 and 2 can be written, respectively, as

= kldl (4.4.42)
and
I; = k2d2 (4.4.43)

we can write Eq. (4.4.41) as
R = TTkldl + Tgkzdz (4'4-44)

Now, using the member kinematic relationships, Eqs (4.4.34) and
(4.4.35), we can write Eq. (4.4.44) as

R=Tk,T,D + Tik.T,D

= (TT](,T1 4+ T3k, T,)D (4.4.45)
or
R=KD (4.4.46)
where
K=Tk,T, + Tz k.T, (4.4.47)

is the structure stiffness matrix.

The process shown above is referred to as assemblage and it involves
the process of transforming and putting together element stiffness
matrices to form the structure stiffness matrix. In general, if these are #
elements in the structure, the structure stiffness matrix can be obtained as

K= TIkT; (4.4.48)

i=1
Now, referring back to the example problem, upon substituting the
matrices T, T, k, k; into the structure stiffness matrix Eq. (4.4.47) and
carrying out the matrix products, we see that the structure stiffness matrix
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can be written as

[ —6 | 212 L7 -L
4 2 0 — = —=
L 15 30 0 10
—6 212 —-L
12 4 — P - 9 =
K=E L 1= 15 10 (4.4.49)
L L
8 0 0 0
sym -12 s5ym '§
>y i I ks 5 ]
Denoting
PL* (kL)
=——= 4,
30E7 30 (4.4.50)
Eq. (4.4.49) can be written as
[ . -
4—4A 244 0 6+34
L
EI 12—y 428734
K== L (4.4.51)
L
8 0
svm 12 —36A
| Ea

At bifurcation, the determinant of the stiffness matrix must vanish.
Thus, by sctting

det [K|=0 (4.4.52)

we obtain a polynomial in A. The smallest root satisfying this equation is
A=0.061, and from Eq. (4.4.50)

El
Pc,=30J.Zi= 1.83% (4.4.53)

The slight discrepancy of Eq. (4.4.53) compared to the value obtained
previously by the differential equation method or the slope-defiection
equation method is due to the round-off error, and this error was
introduced earlier as a result of the approximation from Eq. (4.4.24) to
Eq. (4.4.27).

At first glance, it seems that there is much more work involved in the
stiffness matrix approach than that of the differential equation or the
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slope-deflection equation approaches. However, it should be noted that
the steps shown above can easily be programmed in a digital computer,
and so P, can be obtained quite conveniently for any type of frame.

4.5 SECOND-ORDER ELASTIC ANALYSIS

In the preceding sections, we determined the load that corresponds to a
state of bifurcation of equilibrium of a perfect frame by an eigenvalue
analysis. In an eigenvalue analysis, the system is assumed to be perfect.
There will be no lateral deflections in the members until the load reaches
the critical load P.. At the critical load P.,, the original configuration of
the frame ceases to be stable and with a slight disturbance, the lateral
deflections of the members begin to increase without bound as indicated
by curve 1 in Fig. 4.2. However, if the system is not perfect, lateral
deflections will occur as soon as the load is applied, as shown by curve 2
in Fig. 4.2. For an elastic frame, curve 2 will approach curve 1
asymptotically. To trace this curve, a complete load-deflection analysis of
the frame is necessary. A second-order elastic analysis will generate just
such load-deflection response of the frame,

In a second-order analysis, such secondary effects as the P — 0 and
P — A effects, which we discussed previously in Chapter 3, can be
incorporated directly into the analysis procedure. As a result, the use of
P — & and P — A moment magnification factors (denoted as B; and B, in
Chapter 3) are not necessary.

Because for a second-order analysis the equilibrium equations are
formulated with respect to the deformed peometry of the structure, which
is not known in advance and is constantly chanpging with the applied
loads, it is necessary to employ an iterative technique to obtain solutions.
In a numerical implementation, one of the most popular solution
techniques is the incremental load approach. In this approach, the
applied load is divided into increments and applied incrementally to the
structure. The deformed configurations of the structure at the end of each
cycle of calculation is used as the basis for the formulation of equilibrium
equations for the next cycle. At a particular cycle of calculation, the
structure is assumed to behave linearly. In effect, the nonlinear response
of the structure as a result of geometric changes is approximated by a
series of linear analyses, the geometry of the structure used in the
analysis for a specific cycle is the deformed geometry of the structure
corresponding to the previous cycle of calculation. Because of the
linearization process, equilibrinm may be violated and the external force
may not always balance the internal force. This unbalanced force must be
reapplied to the structure and the process repeated until equilibrium is
satisfied.

For a second-order elastic frame analysis, the iteration process is
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summarized in the following steps (in the following discussion, a subscript
tefers to the load step and a superscript refers to the cycle of calculation
within each load step):

1.
2.

First, discretize the frame into a number of beam-column elements.
Next, formulate the element stiffness matrix k for each and every
element. The element stiffness matrix is given in Eq. (4.4.24), or in
its approximate form, Eq. {4.4.27). (P can be set equal to zero in
these equations for the first cycle of calculations.)
. Assemble all these element stiffness matrices to form the structure
stiffness matrix K.
. Solve for the incremental displacement vector using
AR; =K! AD} ‘ (4.5.1)
from which
AD{=({K!)"' AR, (4.5.2)
where
AR, = prescribed incremental load vector of the i load step
K! = structure secant stifiness matrix at the beginning of i load
step
AD{ = incremental structure nodal displacement vector at { load
step.
. Update the structure nodal displacement vector from

D! =D, + AD} (4.5.3)
where

D} = structure nodal displacement vector at the end of the first
cycle of calculation at the ¢ load step
D; = structure nodal displacement vector at the beginning of the
i load step
AD{ = incremental structure nodal displacement vector evaluated
at Step 4.

Extract the element end displacement vector d; from D{ for each and
every element in the structure.

For each element, evaluate the element axial displacement e and
element end rotations 84, &8s from Eqgs. (4.4.7) to (4.4.9).

For each element, evaluate element axial force P and element end
moments M,, Mg from Eqs. (4.14.12) to (4.4.14).

For each element, evaluate element end forces from Eq. {4.4.10).

. Form the structure internal force vector R} at the end of the first

cycle of calculation by assembling the element end forces evaluated
in Step 9 for all the elements,
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11. Calculate the external force vector from

Ri+1 = Ri + ARI (4.5.4)
12. Evaluate the unbalanced force AQ} at the end of the cycle from
AQ{=R;,, — R} (4.5.5)

13. Using the current value of axial force P, update the element stiffness
matrix k for each and every element. Assemble k for all the elements
to form an updated secant structure stiffness matrix K. Evaluate the
incremental displacement vector AD? from

AD; = (K)) ™' AQ! (4.5.6)

where AQ/ is the unbalanced force vector calculated in the previous
cycle of calculation.
14. Update the structure nodal displacement vector from

2
D?=D,+ ;_;1 AD¥ (4.5.7)

15. Extract the element end displacement vector d, from D? calculated in
Eq. (4.5.7) for each and every element. Update e, 8,4, and 5 and,
hence, P, M., and My as done in Steps 7 and 8 for all elements in
the frame.

16. Update the element end forces for all the elements and form the new
structure internal force vector RZ.

17. Evaluate the new unbalanced force AQ? from

AQ!=R;, — R (4.5.8)

18. Repeat Steps 13 through 17 as many times as possible until
convergence. Convergence is said to have been attained if the
unbalanced force AQ!, where the superscript j refers to the j cycle of
calculation, falls within a prescribed tolerance.

19. After convergence the structure nodal displacement at the end of the
i load step is obtained by

D, =D!=D;+ >, AD¥ (4.5.9)

k=1
20. Prescribe another load increment and repeat Step 2 to 19.

A schematic representation of the above procedure is shown in Fig.
4.12a,b for a one degree of freedom structure. In performing the above
procedure, the complete load-deflection response of the frame can be
traced, and the stability limit point is obtained as the peak point of this
load-deflection curve.

As the stability limit point is approached in the analysis, corivergence
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FIGURE 4,12 Iteration technique for second-order elastic frame analysis

of the solution may be slow. To facilitate convergence, a smaller load
increment should be used.

The numerical procedure described above can be programmed in a
computer. By using the computer to perform a second-order analysis, the
design moments for the members can be obtained directly. Comparative
studies using second-order elastic analysis and first-order elastic analysis
in conjunction with B;, B, moment amplification factors described on
Chapter -3 have been made.*® It was demonstrated that for rigidly



270 Rigid Frames

connected rectangular frameworks of usual proportion, the two ap-
proaches would give satisfactory results.

4.6 PLASTIC COLLAPSE LOADS

In the preceding discussions, the frame is assumed to behave elastically
throughout the entire stage of loading up to failure. The failure of the
frame is a result of instability when the stiffness of the frame vanishes.
Consequently, the elastic critical load P is the maximum load for an
elastic frame. On the other extreme, if we exclude the instability effect
but consider only the plastic yielding of the material, failure of the frame
will be controlled by the formation of a plastic collapse mechanism.
The plastic collapse mechanism load F, is the maximum load-carrying
capacity of the frame.-A plastic collapse mechanism will form when there
ar¢ sufficient number of plastic hinges developed in the structure to
render it statically unstable. Before we proceed to the discussion of the
method of determining the collapse load F,, it would be pertinent here to
briefly explain the basic concept of plastic hinge and plastic collapse
mechanism in a simple plastic theory.

4.6.1 Plastic Hinge

If a simple tension test is performed on a structural steel specimen, its
stress—strain diagram will be as seen in Fig. 4.13: there a definitive knee

FIGURE 4.13 Uniaxial stress—strain behavior of structural steel
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at A marks the yield point of the material. The stress level that
corresponds to point A is the yield stress of the material. If the stress is
below the yield stress oy, the material behaves elastically as shown by line
OA. After the yield stress has been reached, the strain can increase
greatly without any further increase in stress as indicated by line AB.
When the strain has reached e, =12¢,, further increase in strain will
bring about a further increase in stress as a result of strain-hardening, as
indicated by line BC. For simplicity, the effect of strain-hardening is
usually not considered in a simple plastic design analysis. Neglecting this
effect will obviously lead to a conservative design. When material can
sustain a large deformation without fracture, this is known as ductifity. It
is this unique property of structural steel that makes plastic design
possible.

When a member is subjected to pure bending, and if the usual
assumption of plane sections before bending remain plane after bending
is made, a series of stress and strain distributions across the section
corresponding to an increasing bending moment can be sketched, as we
do in Fig. 4.14a—d. The corresponding moment-curvature relationship is
shown in Fig. 4.15. The points a, b, ¢, and d on the figure correspond to
the various stages shown in Fig. 4.14. Before the stress in any fiber in the
cross section reaches the yield stress o, (Fig. 4.14a), the section behaves
elastically (line OA in Fig. 4.15). When the extreme fibers of the cross
section just reach o, (Fig. 4.14b), the corresponding moment is referred
to as the yield moment M, and is denoted by point A in Fig. 4.15. Further
increase in moment above the yield moment will increase the curvature
of the cross section at a faster rate. As the load continues to increase,
yielding of fibers will spread and penetrate toward those fibers located
closer to the neutral axis of the cross section (Fig. 4.14c). This process of
successive yielding of fibers towards the neutral axis of the cross section is
referred to as plasiification. Note that because of the stress—strain
behavior of steel, the stresses of the yielded fibers remain at o,. When
plastification of the fibers across the cross section is completed (Fig.
4.14d), the cross section cannot carry any additional moment. The
moment that corresponds to the full plastification is referred to as the
plastic moment M, denoted by point B in Fig. 4.15. It is clear from Fig.
4.15 that the yield moment M, is not the maximum moment capacity of
the cross section. Rather, the maximum moment capacity is the plastic
moment M. The exact shape of the M-® curve from M, to M, (curve AB
in Fig. 4.15), as well as their relative magnitudes, are different for
different cross-sectional shapes. For example, for a rectangular cross
section, M,/M,=1.5, and for hot-rolled, wide-flange sections, it is
M,,/M,=1.12 if bent about the strong axis, and Mp/M,,=1.S if bent
about the weak axis.

Figure 4.15 shows also that the cross section can sustain a constant M,
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through a large rotation capacity, as indicated by the horizontal line BC,
precisely because of the large ductility of steel. In other words, the cross
section behaves like a real hinge, but carrying a constant moment
capacity M,. Hence the word plastic hinge is used to indicate such a
property for a steel cross section.

4.6.2 Plastic Collapse Load P, by Hinge-by-Hinge Method

Consider a propped cantilever of length L subjected to a concentrated
load P acting at midspan (Fig. 4.16a). The structure is statically
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FIGURE 4.15 Moment-curvature relationship

indeterminate to the first degree. Thus, if a plastic hinge is developed in
the beam at the maximum moment location, the beam will become
statically determinate. If, in addition, a second plastic hinge is developed
at a subsequent ctitical location, the beam will become statically unstable
and a collapse mechanism will develop for the beam. In the following, we
shall denote the stage of loading from beginning to the formation of the
first plastic hinge as load stage 1 (Fig. 4.16b), and the additional loading
beyond load stage 1 as load stage 2 {Fig. 4.16e). We use the subscripts 1
and 2 to distinguish these two load stages.

Load Stage 1

Before the formation of the first plastic hinge, the beam behaves
elastically; the elastic moment diagram under the applied load P, is
shown in Fig. 4.16¢. Since the moment at the fixed end is larger than the
moment at midspan, the first plastic hinge will form at the fixed c¢nd
{point A). The load that correspends to the formation of the first plastic
hinge can be found by equating 3P, L/16 to M,,.

—= 6.1
16 . (4.6.1)
from which, we obtain the first plastic hinge load
16M,
Pt= r (4.6.2)

3L
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The moment at midspan (point B), when the first hinge is just formed,
is
ShRL  S(16M,/3L)L 5
32 32 6 °

(4.6.3)

Figure 4.16d shows the moment diagram at the end of load stage 1.

Load Stage 2

After the formation of the first plastic hinge at A, the propped cantilever
becomes a simply supported beam with a constant moment M, at A to
carry the load P}. When the additional load P, is applied, the beam
behaves as a simply supported member (Fig. 4.16e); Figure 4.16f shaws
the corresponding moment diagram due to P,. The load P, is now added
to the first plastic hinge load P} and the resulting maximum moment at
midspan under the combined load P + P, is 5M,/6 + P,L/4. The second
plastic hinge will form at midspan, when this moment reaches the plastic
moment capacity M, that is, when

5M, PRL
—Pp =M, (4.6.4)
6 4
from which we obtain the second plastic hinge load
M
Pr===t 4.6.5
=37 (4.6.5)

At the formation of second plastic hinge, the structure becomes
statically unstable and a plastic collapse mechanism, such as shown in
Fig. 4.16h, emerges.

The collapse load E,, that brings the beam to its collapse state, is the
sum of P} and P;

P,=PT+P;
_16M, 2M,
3L 3L
_ s,
L

(4.6.6)

and the moment diagram at the collapse state is shown in Fig. 4.16i
obtained by superposing the moment diagrams of Fig. 4.16d and g.

The procedure described above is called the hinge-by-hinge analysis. It
is essentially a sequence of elastic analyses with additional plastic hinges
introduced during the course of loading. The method can be programmed
in a computer and thus extended to cases in which the structure and
loadings are more complicated.” In the hinge-by-hinge analysis, the
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sequence of formation of plastic hinges is traced. In general, if the
structure is statically indeterminate to the nth degree, then the formation
of (n+1) plastic hinges will be necessary for the structure to reach its
collapse state.

4.6.3 Plastic Collapse Load by Mechanism Method

To determine the plastic collapse F, in a more direct manner, a simpler
method, known as the mechanism method, will be presented here. This
method is based on the upper bound theorem of plastic analysis. The
theorem states that a load computed on the basis of an assumed failure or
collapse mechanism will always be greater than or at most equal to the
true collapse load. Thus, in using this theorem, all possible collapse
mechanisms of the structure are identified and the load corresponding to
each of these mechanisms is evaluated. The mechanism that gives the
lowest value of P, will be the collapse mechanism. Strictly speaking, to
ascertain the mechanism so chosen will give the lowest value of F, a
moment check is often necessary to ensure that the moment everywhere
in the structure is less than or at most equal to M,. For an assumed
mechanism that is not the true collapse mechanism, this moment check
cannot generally be made. The application of the mechanism method to
obtain F, 1s greatly facilitated by the use of the virtual work equations.

P, for a Propped Cantilever

To demonstrate the use of the virtual work equations in the mechanism
method to obtain F, in a direct manner, consider the same propped
cantilever shown in Fig. 4.16a as reproduced in Fig. 4.17a. The collapse

FIGURE 4.17 Collapse mechanism of a B
propped cantilever ]
B
I
I

tb}
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load P, can be determined directly from the assumed collapse mechanism
as shown in Fig. 4.17b. The calculations can be made in the following
manner: Assuming the plastic hinge at A undergoes a virtual rotation of
648, it is readily seen from the geometry of the collapse mechanism that
the plastic hinge at B will undergo a virtual rotation of 266, and the
vertical drop of point B from its original position is L68/2, Note that
smal] displacement assumption is used in evaluating this vertical drop.

The external virtual work done during this virtual displacement is equal
to the applied load P times the distance it travels, i.e.,

W, = P(LO8/2) (4.6.7)

and the virtual strain energy stored in the structure during this virtual
displacement is equal to the sum of the plastic moment times the hinge
rotation at points A and B, i.e.,

8Uin = My(86) + M,(266) (4.6.8)

Note, when writing Eq. (4.6.8) it is tacitly assumed that all
deformations are concentrated in the plastic hinges. As a result, no
virtual strain energy is stored anywhere else but in locations of plastic
hinges during the virtual displacements.

Equating Eq. (4.6.7) to Eq. (4.6.8), we have

P(L66/2)= M(d6) + M,(268) (4.6.9)
from which we obtain the collapse load
6M

p=—t .6.10

b= (4.6.10)

which is the same as Eq. (4.6.6), which was obtained previously by the
hinge-by-hinge analysis.

The mechanism method can be extended to obtain F, for a framed
structure. This is described in the following example.

P, for a Pinned-Based Portal Frame

Figure 4.18a shows a pinned-based portal frame loaded by a vertical force
of 1.5P at midspan of the beam and a horizontal force of P at point B.
We will now calculate the collapse load of the frame using the mechanism
metheod.

Unlike the previous example of the propped cantilever in which only
one collapse mechanism was identified, three possibie collapse mechan-
isms for the portal frame can be identified. They are shown in Fig.
4,18b—d. The mechanism shown in Fig. 4.18b is called the beam

mechanism; in Fig. 4.18c, it is called the sway mechanism; and in Fig.”

4.18d, we have the cambmed mechamsm which contains the features of
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FIGURE 4.18 Collapse mechanisms of
a simple portal frame
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both the beam and sway mechanisms. The corresponding virtual dis-
placements are also indicated in the figures. To calculate P,, we write the
virtual work equations for all these mechanisms.

Wy = 8, (4.6.11)

Beam Mechanism

(L.5P)(L86/2) = M,(80) + M,(256) + M,(66)  (4.6.12)

from which we obtain

16 M,
=3 (4.6.13)
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Sway Mechanism
P(L56/2) = M,(60) + M,(80) (4.6.14)

from which we obtain

M
p=4-0 (4.6.15)

Combined Mechanism
(1.5P)(Lé8/2)+ P(L66/2) = M(260)+ M, (260} (4.6.16)
from which we obtain oM
===t 4.6.1
5=3 L (4.6.17)

Since the lowest value is P, from the upper bound theorem, we
therefore choose Py as the collapse load. However, to ensure that P is
the true collapse load, we need to perform a moment check on the
structure. By drawing free-body diagrams of the frame (Fig. 4.19a), it is

- FIGURE 4.19 Moment check
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readily seen that the condition M <M, is satisfied everywhere in the
frame (Fig. 4.19b). Therefore, we can conclude from the lower bound
theorem of plastic analysis' that P,=Py;=16M,/5L is the collapse
load and the combined mechanism is the collapse mechanism of the
frame.

For multistory multibay frames, a number of possible collapse mechan-
isms will exist. It may be difficult for the analyst to envision all these
possible mechanisms. However, various mechanisms can be constructed
systematically from the two basic mechanisms, namely the beam and the
sway mechanisms, by a process known as combination of mechanism.
Thiz method is described in detail in reference 10 and will not be
presented here. Alternatively, one can obtain P, for such frames by the
hinge-by-hinge method with the aid of a computer.’

Generally speaking, the plastic collapse load B, will give a reasonabie
estimate of the failure load P; of the frame only if the effect of instability
is small and can be ignored, as in, for example, single-story frames that
consist of stocky members. For multistory frames in which stability is
important, the rigid-plastic collapse load will not be representative of the
failure load P In reality, failure of frames 1s a result of both instability
and plasticity effects. Thus, neither the critical load P, evaluated by
considering elastic instability effect only, nor the rigid-plastic collapse
load F,, evaluated by considering plasticity effect only, will represent the
failure ioad B of the frame. To obtain a precise value of F, a tigorous
analysis, such as a complete elasto-plastic analysis of the structure, may
be necessary. This type of analysis is rather complex and costly and
inevitably required the use of a computer. Howevet, for design purposes
it is more desirable if F; can be obtained by a simpler means. In the
following section, a simple method to estimate F; is discussed.

4.7 MERCHANT-RANKINE INTERACTION EQUATION

We have pointed out in the previous sections that neither P, nor F, wiil
represent Fr of most frameworks. They represent only two extreme cases
in which only the instability effect or only the plasticity effect is
considered in the analysis. In reality, the effects of instability and
plasticity interact with each other. The exact interaction is rather
complex, and so approximate interaction equations involving relatively
simple calculations are desirable. One such interaction equation has been
proposed by Horne and Merchant.'! It has the simple form

AL B

1 7.1
2P, (4.7.1)
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FIGURE 4.20 Merchant—-Rankine equation

where

P = elastic critical load of the frame
F, = plastic collapse load of the frame
F; = failure load of the frame

Equation (4.7.1) is called the Merchani—Rankine equation. This
equation is plotted in Fig. 4.20. As can be seen, P, and F, represent end
points of a straight line interaction equation for the failure load F. It has
been demonstrated'' that the failure load P obtained from Eq. (4.7.1) is
usually conservative and reasaonably accurate for design purposes.

4.8 EFFECTIVE LENGTH FACTORS OF FRAMED MEMBERS

In the design of rigid frames, it is common practice to isolate each
member from the frame and design it as an individua! beam-column,
using the beam-column interaction equations discussed in the previous
chapter, But, as mentioned previously, the behavior of a framed member
is affected by all its adjacent members in the frame. As a result, the
influence of other members on the particular member in question must be
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taken intg account in a design. One convenient way to include this
interaction effect is to use the concept of effective length factor K. We
discussed the concept of effective length factor for isolated column with
idealized end conditions thoroughly in Chapter 2. Here we will discuss
the effective length factor for a framed member. The determination of
the effective length factor K for a framed member is more involved than
that for an isolated member, because the stiffness of all adjacent
members, as well as the rigidities of the connections, must be included in
estimating the rotational restraint at the ends of the member in question.
In theory, the effective length factor K for a framed column should be
~ determined from a stability analysis of the entire structure. However, for
design purposes this procedure is impractical and the use of a simpler
procedure is much more desirable. One such procedure was proposed by
Julian and Lawrence.'? Their procedure was recommended by the AISC,
and we will therefore discuss it in what follows. Since the behavior of a
framed column will be different, depending on whether the frame is
braced (sidesway prevented) or unbraced (sidesway permitted), we will
discuss each case separately. -

4.2.1 Braced Frame

The model used for the determination of K for a framed column braced
against sidesway is shown in Fig. 4.21a. The column in question is
denoted by c2 in the figure. The assumptions used for the model are:

1. Ali members are prismatic and behave elastically.

2. The axial forces in the beams are negligible.

3. All columns in a story buckle simultaneously.

4. At a joint, the restraining moment provided by the beams is
distributed among the columns in proportion to their stiffnesses.

5. At buckling, the rotations at the near and far ends of the girders are
equal and opposite (i.e., the girders are bent in single curvature).

Using the slope-deflection equations (3.7.13) and (3.7.14) for the
columns and (3.8.15) and (3.8.16) for the beams, we have

For Column 1
EI
(Ma)a = (I) 1[-5'115’;\ + 5;;0n) 4.8.1)

For Column 2

(M) (%{) Z[SiiBA + 5;;05) (4.8.2)

(Mp)o = (EII) 1[31‘16». + 5;i65) (4.8.3)
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Far Column 3
El
(My)es = (f) [53€a + 5:05) {4.8.4)
c3
For Beam 1
£ Ef
Maor=(7) (0.-200=(5) o0 83
bl bl
For Beam 2
El El
(Ma)oe= (—) (40, —26,]= (—) (284) (4.8.6)
L b2 L b2
For Beam 3
Er Er
(M) = (—) [48p — 28] = (—) (265) (4.8.7)
L b3 L jix



284 Rigid Frames

For Beam 4

El

).,4[463 —26s]= (Z)M(ZBB) (4.8.8)

El
(Mp)ns = (Z
Note that because of Assumption 2, we can use s; =4 and 5;=2 for

the beams,
For joint equilibrivm at A, we must have

(Ma)er + (Ma)ea + (Ma)yy + (Ma)p =0 (4.8.9)
from which we obtain
(Ma)ez = —(Ma)or — (Madvz — (Ma)a (4.8.10)

Substituting Eqs. (4.8.5), {(4.8.6), and (4.8.1) for (M), (Ma)pz, and
(M,), respectively, into Eq. (4.8.10), we have

EI El Ef
= LZANP _(__) 0 +5,05] (4.8.11

(Ma)e 2[(L)bl+(L).,2] A= \T) Jouba+siful (4810)
From Eq. (4.8.2), we can write

[Sii6A+SijBB]=W—A):_2' (4.8.12)

(.

Finally, by substituting Eq. (4.8.12) into Eq. (4.8.11), and rearranging,
we obtain

EI

El ;(f)b
(MA):2=_2(_) ————04 (4.8.13)

Sz (@)

A L c

where we have used the notation

EI) (EI) (EI)
— | ={—=] +(— 4.8.14
;(L b VL Ly ( )

7 =5+ (F)
;(L =)\, (4.8.15)

Following the same procedure by considering equilibrivm at joint B,
the moment at the B end of column 2 can be written as

ﬂ
(MB)Q=-2(EZ’) %}%
022 I c

B

05 (4.8.16)
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where we use the same notation

-, e

(7). -2+ (T, (4518

Eliminating (M), from Egs. (4.8.2) and (4.8.13), and (Mg)., from
Eqs. (4.8.3) and (4.8.16), we can obtain the following equations

>3,

a VL

S;i+2% 9A+sij6]3=0 (4.8.19)
A L T
Er
§ii0a + s+2§(—r)~56*0 (4.8.20)
ij=A it g B™ 0.
B L c
Denoting
2(Z)
~ VL /., sum of column stiffnesses meeting at joint A
Ga= = - - — (4.8.21)
> ( ErI ] sum of beam stiffnesses meeting at joint A
a VL
and
2(Z)
Go = 8 \ L/ sum of column stiffness meeting at joint B (4.8.22)

D (51) " sum of beam stiffness meeting at joint B
B L b

The equilibrium equations (4.8.19) and (4.8.20) can be written in matrix

form as
e e

Sij Sit
&

2

5'i+'—
i GA

At bifurcation, we must have the determinant of the coefficient matrix
vanished.

det =0 (4.8.24)
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Using the expressions for s; and s; [(Eqgs. (3.7.15) and (3.7.16)] in Eq.
(4.8.24) and realizing that

kL=(VP/ENL=nVP[P.=n/K (4.8.25)
Equation (4.8.24) can be simplified to give

L R <

(4.8.26)

Equation (4.8.26) can be expressed in a nomograph form as shown in
Fig. 4.21b (see reference 12). To obtain the effective length factor K of
column AB, one needs only to evaluate the relative stiffness factors Ga
and Gp expressed in Egs. (4.8.21) and (4.8.22), respectively, at its two
ends. A straight line joining the two & values will cut the middle line
which gives the value of K. For example, if G, =0.2, Gg=0.6, the K
value for the column is 0.65 (see dotted line). Note that the range of K is
from 9.5 to 1 for a braced frame.

4.8.2 Unbraced Frame

The model for the determination of K for a framed column subjected to
sidesway is shown in Fig. 4.22a. The column in question is denoted by ¢2
in the figure. The assumptions used for this model are the same as that
used for the model of the braced frame, except that for this model
assumption 5 is modified to the following: at buckling, the rotations at
the near and far ends of the girders are equal in magnitude and direction
(i.e., the girders are bent in double curvature).

Again, making use of the slope-deflection equations (3.8.1) and (3.8.2)
for the columns and (3.8.17) and (3.8.1R) for the beams, we can write

For Column 1

E i A

(Ma)a = ("{) 504 + 5508 — (55 + 55) —:\ (4.8.27)
L cllb Lcl

For Column 2

EN T A

(Ma)e= (Z) 50 + 5308 — (53 + 5) L_z] (4.8.28)

cxl i .

VENN T A

(MB)CI = (r) , SijQA + SiiGB - (Sii +Sij) L_2:| (4.8.29)

For Column 3

ElN T A
(MB)cB = (_) 504+ 5508 — (545 + Sij) _] {4.8.30)
L/l Lca
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For Beam 1

El Erf
L bl L b1
For Beam 2

(Ma)o2 = (Efl)bz[‘wA +2604]= (%[)bz(ﬁgﬁt)

For Beam 3

(Mp)os = (%)MHBB + 28] = (%)ba(ﬁaa)

For Beam 4

(Mp)os = (%)M[‘mn +26g] = (%)M(GBB)

For joint equilibrium at A, we must have

(MA)I:I + (MA)(:Z + (MA)bl + (MA)hz =0

(4.8.31)

(4.8.32)

(4.8.33)

(4.8.34)

(4.8.35)
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from which

{(Ma)ez = —(Ma)or — (Madn2 — (Ma)er (4.8.36)

Substitutiﬂg Eqs. (4.8.31), (4.8.32), and (4.8.27) for (MA)bls (MA)IJ'.!:
and (M,),, into Eq. (4.8.36), we have

@a==(T), (7)o

EI A
_(Z)ﬂ [S“GA +50p — (st 53) L—] (4.8.37)

el

From Eq. (4.8.28), we can write

A (Ma)e
Sii9A+SijBB_(Sii+Sij)L_c2=(_£?)— {4.8.38)
L 2
If L,=L.,, Eq. (4.8.38) can be substituted into Eq. (4.8.37). The
result is
EI
EI EA: (f)b
(MA)C;».=—6(—) ——— 0 (4.8.39)
Her )
A L ¢
where we have used the notation
EI) (EI) (EI)
—) =l—) +|— 4.8.40
E(L b L bl L b2 ( )
EI El Er
—-— == — 4,8.41
2(2) =)L+ (T, @841

Following the same procedure, we see that by considering equilibrium
at joint B, the moment at the B end of column 2 can be written as

El

El %‘*(f)b
(MB)cz=“6(—) ————06p (4.8.42)

e

B L [

where we use the same notations

EI) (EI) (EI) '
— =|—) +[— 4.8.43
%(L b L b3 L ba ( )

Ei El Ef
— ] =|— — 4.8.44
2(7) =)L (F), (4840
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Eliminating (M,)., from Egs. (4.8.28) and (4.8.39), and (M3).. from
Eqgs. (4.8.29) and (4.8.42), we can obtain the following equations

EI
; (f),, A
IS'ii'i'ﬁ__' BA+Sii9B_(Sii+Sij)_:0 (4845)
2@
A L c
and
EI
EB: (f)., A
5|19A+ St 0———— GB“(Sii‘l‘S;j)i-"-"O (4846)
El Lo
(%)
B c

Equations (4.8.45) and (4.8.46) are obtained by considering joint
equilibrium at A and B, respectively. A third equation can be obtained
by considering member equilibrium of column 2.

(MA)ea+ (Mp)ea + PA = VL, =0 (4.8.47)

Since there is no external horizontal force acting, ¥V =0 and Egq.
(4.8.47) becomes

(Ma)ez + (Mp)ex + PA=0 {4.8.48)
Substituting Eqs. (4.8.39) and (4.8.42) into Eq. (4.8.48) and rcalizing
that PA = (g) (kL) A—, we can write Eq. (4.8.48) as
L 2 Lcl
EI Erf
3(Z),. 23, A
—————0G,—b6——— 05+ (kL)ﬁzL—=0 (4.8.49)

EI (EI)
(7. 3@
The equilibrium equations (4.8.45), (4.8.46), and (4.8.49) can be put

into matrix form as

6

Sii+G_A 55 — (s +53p) 8,

6 g 0
Sij sit— (st sy) "i=|0 (4.8.50)

(g A
]

_i _i (kL)?' Lo

L, GA GB ez i

where G, and Gg, are defined in Eqs. (4.8.21) and (4.8.22), respectively.
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At bifurcation, we must have

6
Sii +G_A Sij — (s + 53)
det 5ij st — —(sutsy)|=0 (4.8.51)
Gp
6 6 5
GA - GB (kL)I:Z

Using the expressions for s; and s;; [Egs. (3.7.15) and (3.7.16)] in Eq.
(4.8.51) and realizing that kL = /K, Eq. (4.8.51) can be simplified to

GaGa(n/K)? =36 (7/K)

6(Ga + Gg) tan (7/K) = (4.8.52)

Equation (4.8.52) is expressed in a nomograph form as shown in Fig.
4.22b (see reference 12). Note that K is always greater than or equal to
unity.

Equations (4.8.26) and (4.8.52) express length factor K of a framed
column as a function of the end restraint factors G, and Gg. In the
present development, all members are assumed to behave elastically,
However, in many cases the magnitude of axial load in the column is such
that inelasticity may set in when buckling occurs. To account for
inelasticity in the column, Yura (see reference 13) sugpested that the end
restraint parameters be modified to

E
Ginelnsti: = Gclastic(f) (4 8. 53)

where

E, =tangent modulus of the material
G ojusiec = €nd restraint parameter assuming all members are elastic
Ginelastic = €nd restraint parameter accounting for inelasticity in the
column

The K-factor evaluated using Gipgasue Will be smaller than that
evaluated using G ... The reason for this is that the apparent end
restraint from the beams will be greater for an inelastic than an elastic
column because of a reduction in bending stiffness of an inelastic column.

An alternative approach to determine the effective length factor K for
framed columns based on the stiffness distribution approach was pro-
posed by Wood,**
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4.9 ILLUSTRATIVE EXAMPLES

Example 4.1. Two-Member Frame
Far the structure shown in Fig. 4.23, determine the effective length factor
K for column AB using

(a) the slope-deflection equation
(b) the nomograph

c
B
i 2Elo ""é’r’
L
El,
A
THar
L L
I FIGURE 4.23 Two-member frame
SOLUTION

(a) Slope-Deflection Equation
Referring to Fig. 4.24 and using the slope-deflection equations, we see
that we have

Column AB
MAB=%]'(Siic9A+Sijc9B) =%(Sijc9B) (4.9.1)
Mga= %’ (SicBa +5ic08) = % (5:.6n) (4.9.2)
Beam BC
Mpc = % (SiwPp + SipBc) = 2‘?" (465 +26¢) (4.9.3)
Mcg = % (500 + SipBc) = zif" (26p+460)=0  (4.9.4)
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FIGURE 4.24 Beam and column moments

The equation Mcp = leads to

Joint Equilibrium

Therefore

Using Table 3.7, we obtain
kL= (VP/EIL =5.5405

Mpc=

9c=—%93

therefore, the end moment Mg reduces to

(SIII:BB) +—

El

s

ZEIU

il —

(365)

MBA+MBC=0

2EI
g (393) 0

BB(S"B+6) 0

=6

(4.9.5)

(4.9.6)

(4.9.7)

(4.9.8)

(4.9.9)

(4.9.10)

(4.9.11)
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from which
30.7ES [P, [=m _
P=P,. = 2 and K= B \N307~ 0.57 (4.9.12)
(b) Nomograph
Ga =0 (fixed-end) (4.9.13)
_(ER/L) _1
GB_ZEIU/L_Z (4.9.14)

The G value calculated above is valid only if 8, = —6y (see Fig. 4.21).
In our case 0-+# —0g, and so Gy must be adjusted. The adjustment can
be made by realizing that for 8. = —6@p,

2E] AE],
Mpc=""(26p) = Ely fp (4.9.15)
L L
and for our case 6EI
Myc=—~ % g (4.9.16)

Thus, the apparent stiffness of the beam with its far end hinged is
6/4=1.5 times greater. Consequently, to adjust Gy we need only to
divide it by the factor 1.5

G
(GB)ndjustcd = l_g =0.333 (4917)
Using the nomograph shown in Fig. 4.21 with Ga =0 and (Gg)agjusica =
0.333, we obtain

K =0.57 (4.9.18)

(/ E;ﬁmple 4.2.i Simple Portal Frame
“Determine the design moments for the simple frame shown in Fig, 4.25
using the LRFD method.

soLution: In the LRFD method, a first-order analysis is performed on
the structure. The secondary effects are taken care of by the use of the
member stability (P — 8) and frame stability (P — A) moment magnifica-
tion factors. These factors are designated as B, [Eq. (3.10.18)] and B,
[Egs. (3.10.19) or (3.10.20)], respectively.

First-Order Analysis

Figure 4.26a shows the decomposition of the frame into a nonsway and
sway component, The corresponding nonsway and sway moments are
shown in Fig. 4.26b and c, respectively.
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FIGURE 4.26 Nonsway and sway moments
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Column AB

The design moment for column AB is determined from Eq. (3.10.17).
The magnitudes for M, and M|, can easily be determined from Fig. 4.26b
as 0 and PL, respectively. To determine the B, and B, factors, we need
to evaluate the effective length K for the column. From the nomograph in
Fig. 4.22, K was found to be 2. However, since the right column is
pinned at both ends, it cannot resist any sidesway motion. As a
consequence, all the resistance to frame instability effect comes from the
left column. For this situation, the column that does not provide any
sidesway resistance is said to lean on the column, which provides the
sidesway resistance. Since not all of the columns are effective in resisting
sidesway, the effective length of the column providing the sidesway
resistance must be modified. Le Messurier'® suggested a formula for this
modification

K=\ (ZPc.k) (4.9.19)

K; = modified effective length of the column providing the side-
sway resistance
P = axial force in the column providing the sidesway resistance
L P = axial loads on all columns in a story
% B =Euler loads of all columns in a story providing sidesway
resistance for the frame evaluating using the effective length
obtained from the nomograph.

where

For our case, the modified effective length for column AB is

P /nZEI( 2P )
AP L*P \P/K?
=VZK’=2V2 (4.9.20)
Thus, from Eq. (3.10.18)

= =1 (4.9.21)
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and, from Eq. (3.10.20) '

1 1
o _LP o 2P
T Py PJ(2V2)
. S (4.9.22)

P
— 16 —
i-lep

o

The design moment is, from Eq. (3.10.17)

MH = Banl + BZMII
0.6
= 0) +
P( ) P

—0.64— 1-16=
! P, P,

(PL)

- L (4.9.23)

P
1-16—
£
Column CD
This column is pinned at both ends, and so both M, and M, are zero. As
a consequence, the design moment is zero and, therefore, this column is
desipned as a centrally loaded member.

Example 4.3, Two-Bay Frame

Check the adequacy of column CD of the frame shown in Fig, 4.27 using
the LRFD approach. The frame is braced against out-of-plane bending at
story height of every column and at midheight of the exterior columns.
Assume the loadings to be

D =0.9 kips/ft
L =1.6 kips/ft
W=10.8 kips/ft

and column CD can develop its full plastic moment capacity.

soLuTion: For the given loadings, it can be seen from Table 1.1 that the
pertinent load combinations are

. 14D

1.2D + 1.6L

1.2D +0.5L

1.2D +1.3W +0.5L
0.90 - 1.3W

e e
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W27 5 94 b W27 x 94 F

W14 x 88

40H 40 ft |
r 1
Section Proparies:
W14 x 68
A=200In2 I.-7230n" Ze=115M?
rx =6.M1 in ry =248 In
W27 x 94
A=2T7in? ty=3270in* Z, =278
fy =109 In ry=212h
Materiad Properiies
E = 29000 ksl Fy =36 ksl

FIGURE 4.27 Two-bay frame

For gravity loadings, it is obvious that load combination (2) is the most
severe load case and for combined gravity and lateral loadings, it can be
seen that load combination (4) is the most severe load case. As a result,
we need only to check the frame for load combinations (2) and (4).

Load Combination (2); 1.2D +1.6L
Figure 4.28 shows the result of a first-order analysis of the frame. The
first-order moment in column CD is zero, therefore, the second and third
terms of the interaction equations [Eqs. (3.10.15) and (3.10.16)] vanish.
We need only to check the first term.

Determine P,

Strong axis bending

Under the section properties given in Fig. 4.27, we have
Gc == (pinned-end)

_X(EIL). Y (/L)

“X(ENL), T (/L)

. 723/20

" (2)(3270)/40

Gb

=0.221 (4.9.24)
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1.2 D +1.6L -3.64 k/ft
T N T T T T A

| B ——t
2 J,x”
546" |‘“h s’

FIGURE 4.28 First-order analysis for load combination 1.2D + 1.6L

Although the theoretical G value for pinned-end is infinity, for design
purposes it is customary to use G =10 to account for the fact that an
ideal pinned-ended condition does not exist. Therefore

(Gc)ndjuslud = 10

Also, since the far end of the beams are hinged, Gp needs to be
modified. Since the frame does not sway under the present load
G
1.5°

Using the nomograph in Fig. 4.21 with the adjusted values for the G's,
the effective length of column CD was found to be

K.=0.73

and the slenderness parameter can be calculated from

K.L [F
"*mn—r,\/%
_073)(20)(12) [36

7(6.01) 29,000
=0.327 . (4.9.25)

combination, we have (Gp)ugjustea =

Weak axis bending
For weak axis bending, K,=1 and so

L KL \/E_(n(zm(u) 36
¥ ar, VE  x(2.46) V29,000
=1.09 (4.9.26)
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Upon comparing A, and A, it can be concluded that weak axis bending
controls. Using Eq. (2.11.9), P, was found to be

P, =exp[—0.4191%]F,
= exp [—0.419(1.09)*](20.0)(36) = 438 kips (4.9.27)
Check interaction equation

P . 182
d.P, (0.85)(438)

Use the Expression (3.10.15)

P 8( My My

+= +
tpcPu 9 ‘prux "-;beuy

which 15 <1; therefore all right.

Load Combination (4): 1.2D +1.3W +0.5L

Fipure 4.29 shows the results of a first-order analysis of the nonsway and
sway components of the frame. Notice that the wind load is assumed to
distribute to the windward and leeward sides of the frame in a 7:3 ratio.
This is because in addition to exerting a positive pressure on a windward
wall, the wind can simultaneously create a suction on the leeward wall.
Moreover, an uplift force on the roof could be created. However this
uplift force is not considered in this example because it has a beneficial
effect on the frame. In other words, the loadings to be considered here
represent the most unfavorable condition for the frame.

=0.489>0.2 (4.9.28)

) =0.480+0+0=0.489 (4.9.29)

Determine P,

Strong axis bending

Gc=w= (pinned-end) (4.9.30)
Gp=0.221 C o (4.9.31)

To account for the fact that the pinned-end is not ideal, use
(Gc)udjustea = 10 (4.9.32)

To account for the far end of the beam being hinged and for the fact that
the frame sways under the present load combination, the apparent beam
stiffness is only one-half of the beam stiffness used in calculating Gp, (see
Prob. 4.6). Therefore

G
(GD)udjuslcd = ﬁ =(.442 (4933)

and, from the nomograph shown in Fig. 4.22b, we have
K.=173 (4.9.34)
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FIGURE 4.29 First-order analysis for load combination 1.2D + 1.3W + 0.5L
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Since the exterior pinned-ended columns lean on column CD, K, must be
adjusted. Using the method proposed in reference 15 as cited in the
commentary of LRFD, the modified effective length is given by

n’El (L P
(Kx)ndjuslcd = \/L?'_PC;_Z_EJ
_ \/}ZE[ ( 150.4 )
LY(94) \P./KZ+0+0
VIR =219 (4.9.35)
pop = Kbl [
cx JTry E

_(2190)(12) [36
=600 1/29,000—0.981 (4.9.36)

and so

Weak axis bending
K,=1
y =K,,L\/E
Y ar, VE
_(MEo)12) [ 36
= R2.40) 29’000—1.09 (4.9.38)

(4.9.37)

Since A, > A, therefore P, should be determined based on weak axis
buckling

P, =exp [—0.41942)P, = 438 kips

Determine M,

B, factor

Cn
Bl= =1

1——
Fox

0.6

= —5=0.608 (4.9.39)
6742

which is <1, therefore we use B, =1 (£, = ITI*EL/(K,L)* =6742 kips)
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B, factor .
b= [_ZP
E Pn:k
1
=———=1.25 4.9.4
504 1.25 (4.9.40)
749
My =B M, + B M,
= (1)(0) + 1.25(208)
=260 ft — kip = 3120 in — kip (4.9.41)
Determine M,
M, = M, = Z F, = (115)(36) = 4140 in — kip (4.9.42)
Check interaction equation '
P 94
= =0.252>0.2 4.9.43
¢.P, (0.85)(438) ( )
Therefore, use Eq. (3.10.15)
P 8 ( Mo | My, )
+= + =1.0 4.9.44
¢cPu 9 qbeux ¢bMuy ( )

Since the frame is braced against out-of-plane bending, it follows that
M,,=0. The first two terms have the value

94 +§[ 3120 ]
(0.85)(438) ' 9 L(0.90)(4140)
=0.997 (4.9.45)

which is <1; therefore, it is all right.

4.10 SUMMARY

In this chapter, we focussed on the study of the behavior of frameworks.
In particular, two reference loads for frames were discussed. They are the
elastic critical load F,, and the plastic collapse load F,. The elastic critical
load can be cbtained by using one of the following methods: (1) the
differential equation method, (2) the slope-deflection equation method,
and (3) the matrix stiffness method. In obtaining P., only the effect of
instability is considered. However, if only the effect of plasticity or
yielding of the material is considered, one can obtain the plastic collapse
load F, by using either the hinge-by-hinge method or the mechanism
methaod.
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In reality, the collapse loads P; of most frameworks are neither P.. nor
F,, because collapse in most cases is a result of an interaction of the
effects of instability and plasticity. The exact interaction relation is rather
complex. However, for design purposes, the Merchant-Rankine interac-
tion equation provides a simple but reasonably accurate method to
estimate F.

For the design of members in a frame, the K-factor approach provides
a convenient means to account for the end restraint effects of other
members on the behavior of the member in question. The two nomo-
graphs or alignment charts for braced and unbraced frames have been
developed to aid designers to obtain K-factors for columns that are
component parts of a frame.

PROBLEMS

4.1 Find P, for the irame in Fig. P4.1 using
a. differential equation approach
b. slope-deflection approach
¢. matrix stiffness approach

T, A

!

L

EI
]

!

“L /’ﬁ?lﬂ'}" ‘
E L |
W
FIGURE P4.1

4.2 Find P, for the frames in Fig. P4.2a-b for both sway-prevented and
swiy-permitted cases. What conclusion can be drawn from the resuits?

P P 2pP
j .
— - Bi‘ - LC —]— B Cc
i
Lt El=constant LI EI-constant
' for all { for all
members members
L A ] L A D
NI TITTINT o Ll Figazrrea
*_ 1.5L | 1,50
1
(al (k)

FIGURE P4.2
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4.3 For the frame in Fig. P4.3,
a. sketch the buckled shape of the frame
b. establish upper and lower bounds for the critical load
¢. find the critical load fora =1

P
A B c
ier aEl aFEl o
D [+}
I, L
D akl, E_8E F
i i
|
0.5L D.5L ‘
? I
¥

FIGURE P4.3

4.4 Find F, for the frame in Fig. P4.4 using the mechanism method.

FIGURE P44

4.5 For the structure in Fig. P4.5, find the effective length factor K for the
column BD using

a. slope-deflection equation
b. nomegraph

2P
P B C
EMP
P }
|
FITITIE Erriid J
L 1.5L | |
! i :
‘1
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4.6 Discuss how the ¢ faclors for the nomograph can be adjusted to account for

the cases where the far ends of the beams are all
a. pinned
b. fixed

El=constant for all
members

Lc=ZLD|=2an

FIGURE P4.5
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Chapter 5

BEAMS

5.1 INTRODUCTION

Beams are structural members that resist the applied loads primarily by
bending and shearing actions. When a slender beam is under the action
of bending loads acting in the plane of the weak axis of the cross section
(or in the plane of the web of a wide-flange section), in-plane bending
about the strong axis will occur at the commencement of the loadings.
However, if sufficient lateral bracing is not provided to the compression
flange, out-of-plane bending and twisting of the cross section will occur
when the applied loads reach a certain limit. For a geometrically
perfect elastic beam, the limit of the applied loads at which lateral
instability commences is called the elastic lateral torsional buckling load.
The value of the lateral torsional buckling load is influenced by a number
of factors. Among the important ones are the cross-sectional shape, the
unbraced length and the support conditions of the beam, the type and
position of the applied loads along the member axis, and the location of
the applied loads with respect to the centroidal axis of the cross section.
It it well-known that beams of thin-walled open cross sections
composed of slender component plates, such as I-sections, channel
sections, and Z-sections, are particularly susceptible to lateral torsional
buckling. This is because the torsional rigidities of such cross sections are
very low and so their resistance to torsional instability is very limited.
The effects of unbraced length and end conditions on the lateral torsional
buckling load of the beam are rather evident. The longer the unbraced
length and the less restraint the support can deliver to the beam, the
lower the critical lateral buckling load will be. Although it is quite
obvious that different types of loads applied at different locations of the

307
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{a) b)

FIGURE 5.1 Effect of location of loading

beam will give different values for the various eritical lateral buckling
loads, the reason behind the importance of the position of the applied
loads with respect to the centroidal axis of the cross section requires some
explanation. For instance, consider a concentrated force acting on the top
Range of an I-beam (Fig. 5.1a). As lateral torsional buckling occurs, the
cross section will rotate and deflect laterally from its original position. It
can be seen from the figure that the applied force has a destabilizing
effect, since it enhances the rotation of the cross section from its origingl
undefiected position. However, if the same load is applied at the bottom
flange (Fig. 5.1b), it has a stabilizing effect, since it reduces the rotation
of the cross section. Consequently, the critical load corresponding to Fig.
5.1a will be lower than that corresponding to Fig. 5.1b.

The analysis of lateral torsional buckling behavior of beams is
considerably more cotnplex than that of in-plane buckling behavior of
columns discussed in Chapter 2 because the lateral buckling problem is
intrinsically three-dimensional. The problem is further complicated
because the lateral (out-of-plane) deflection and twisting are coupled, so
this coupling effect must be considered in the analysis.
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FIGURE 5.2 Simply supported I-beam subjected to twisting moment

5.2 UNIFORM TORSION OF THIN-WALLED OPEN SECTIONS

When an equal and opposite torque T is applied to the ends of a simply
supported beam with a thin-walled open section, such as an I-section
(Fig. 5.2), the twisting moment along the length of the members is
constant and the beam is said to be under a uniform torsion. Under the
action of the torque, warping of the cross section will occur. This is
illustrated in Fig. 5.3. It shows how plane sections of the cross section no
longer remain plane as a result of the uneven axial deformation that takes
place over the entire cross section. If the applied torque is constant and
all cross sections are free to warp, then the warping deformation in the
beam is the same for all cross sections and takes place freely without
inducing any axial strain on the longitudinal fibers.

For the simply supported beam shown in Fig. 5.2, in which warping of
all the cross sections is unrestrained, the applied torque (twisting
moment) is resisted solely by shear stresses developed in the cross
section. These stresses act parallel to the edge of the component plates of
the cross section, as shown in Fig. 5.4. The distribution of these shear
stresses is the same for all thin-walled, open cross sections. It is usually
assumed that the shear stress at any point acts parallel to the tangent to
the midline of the cross section. The magnitude of these shear stresses
will be proportional to the distance from the midline of the component
plate. These shear stresses are called St Venant shear stresses and the

FIGURE 5.3 Warping of [-section under uniform twisting moment

N T T
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FIGURE 5.4 St. Venant shear (T - T
stress distribution in an [-section @ [— — — — — = =

torsion that is associated with these shear stresses is referred to as St.
Venant torsion T,,.

From mechanics of materials, the angle of twist ¥ over a length L
caused by the St. Venant torsion is given by

y T
E = YeT, {5.2.1)
where

y{L = angle of twist per unit length
T., = 5t. Venant torsion
& = shear modulus
J = torsional constant of the cross section

For a thin-walled, open section of constant thickness ¢, the torsional
constant can be expressed' by

J=1ibr’ (5.2.2)

where b is the length of the midline of the cross section and ¢ is the
thickness of the cross section. If the cross section is made up of n slender
component plates, each with midline length b; and thickness ¢, the
torsional constant can be assumed to be

7=3 13 (5.2.3)
i=1

Table 5.1 gives the expression of J for a doubly symmetric I-section. It
should be mentioned that the above expressions for J are valid only if b/t
is larger than 10. If b/t is smaller than 10, a correction factor must be
used in calculating J (see Problem 35.3).
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Table 5.1 Torsional Constant and Warping Constant for a Doubly Symmetric
1-Section

\‘)I:‘— T, Torsional Conslant Warping Canstant
“ i
q s
" ). 20 1+ td-21 13 T by b
1 [ El b 24
i Th

For the purpose of analysis, it is more convenient to express Eg.
(5.2.1) in the form of the rate of twist as

dy_ T
dz GJ

in which z is the coordinate axis along the length of the beam. Note that
the rate of twist will be constant for a prismatic member subjected to a
uniform torque.

Upon rearranging, Eq. (5.2.4) can be written as

T, = GJﬂ (5.2.5)

(5.2.4)

The St. Venant torsion expressed in Eq. (5.2.5) is also referred to as
uniform or pure tarsion.

5.3 NON-UNIFORM TORSION OF THIN-WALLED, OPEN
CROSS SECTIONS

Consider a cantilever beam subjected to a torque applied at the free end
(Fig. 5.5). At the free end the cross section is free to warp, so the applied
torque is resisted solely by St. Venant torsion. At the fixed end, however,
warping is prevented. As a result, in addition to St. Venant torsion, there
exists another type of torsion known as warping restraint torsion in the
cross section. If the cross section is prevented from warping, axial strain
and so axial stresses must be induced in the cross section in addition to
the shear stresses. These induced axial stresses are in self-balance
because no external axial force is applied to the beam. For an I-section,
the axial stresses developed at the fixed end of the beam are illustrated in
Fig. 5.5. The resultant of these axial stresses in the two flanges constitutes
a pair of equal moments called the bi-moment M, acting oppositely in
each of these two planes of the flanges (Fig. 5.5).
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bending stresses In flanges

~fixed and

___fres end

FIGURE 5.5 Cantilever beam subjected to a twisting moment

The development of these bending moments, or bi-moment, in the
flanges in the cross section becomes evident if one refers to Fig. 5.6.
Since warping is prevented at the fixed end, the two flanges of the beam
must bend in opposite directions as the cross section rotates under the
action of the applied torque. The bending of the flanges will thus induce

FIGURE 5.6 Bending of flanges due to warping restraint at the fixed end

top flange

. s
bending stresses /| ‘\
in top flange bottom flange
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Top flange
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i
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Bottom flangse
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¥

FIGURE 5.7 Moment and shear developed at the fixed-end eross section of an
I-section

bending moments M; at the fixed end (Fig. 5.7). The bending moment M,
in either the top or the bottom flanpge can be expressed in terms of lateral
displacement ; by the usual beam moment-curvature relationship as

dzu[

ElL—
M =El dz?

(5.3.1)
where E is the modulus of elasticity, J the moment of inertia of one
flange about the y axis of the cross section, and u; the lateral
displacement of the flange, as shown in Fig. 5.8.

Associated with the bending moment M; in one flange is the shear force
V; given by the usual beam theory

(5.3.2)

The shear forces V; are present in both flanges of the I-section. They
are equal in magnitude but act in opposite directions, as shown in Fig.
5.7. This pair of shear forces constitute a couple acting on the cross
section. The resulting torsion, which is referred to as the warping restrain:
torsion ot non-uniform torsion, is given by

T, =Vih (5.3.3)

where h is the distance between the lines of action of the shear forces.
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Y

FIGURE 5.8 Rotational and translational relationship

In view of Eq. (5.3.2), Eq. (5.3.3) can be written as

du
T,=—ELh E; (5.3.4)
From Fig. 5.8, it can be seen that the rotation y of the cross section is
related to the lateral deflection u; by

h
=— 53.5
e 3 Y ( )
from which
dau[ h d3y
—_— = 5.3.6
dz?  2d7° ( )

Upon substituting Eq. (5.3.6) into Eq. (5.3.4), we can obtain the
warping restraint torsion as _
hl d3'}’ d3'}’

T,=—-El—=-——F=- — 3
i (5:37)
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where
Lh*
C,=—"— (5.3.8)
2
is called the warping constant of the I-section (Table 5.1). It should be
noted that the warping constant is different for different cross sections. A
general expression for the warping constant is found in reference 2; it is

o= r(ﬁ’s —w)’tds (5.3.9)

in which w, = [f rds, r equals the distance from the shear center of the
cross section to the tangent at any point around the cross section, the
equation
Ws=1 w; ds
5

equals the average value of w, over the entire cross section, f is the
thickness of the thin-walled element, and s is the length of the midline of
the entire cross section. From Eq. (5.3.9), it can be seen that the warping
constant C,, will be zero for those thin-walled, open cross sections for
which all component plates intersect at a common point, such as the
angle, the tee, and the cruciform sections (see Fig. 5.9a). This is because

FIGURE 5.9 Cross sections with C.=0

LT =

Angle Tes Crucitorm

{a)

Solid Circular Tubular
ib)
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the shear centers { for these sections are located at the point of
intersection of the component plates. So w, and w, will be zero,
Physically, this means that all these sections do not warp when subjected
to twisting moments. Another type of cross sections for which no warping
will occur is the axisymmetric sections, such as the solid or circular
tubes (see Fig. 5.9b). Here, those sections that are originally plane will
remain plane after the twisting moment is applied. For sections other
than those shown in Fig. 5.9, warping will generally occur when a twisting
moment is applied. Warping for narrow rectangular sections and box
sections composed of narrow rectangular elements are usually negligible,
and so C, may be taken as zero for these sections. If warping is
restrained, the applied twisting moment will be resisted by both St.
Venant torsion and warping restraint torsion.

T=T.+T, (5.3.10)
In view of Eq. (5.2.5) and Eq. (5.3.7), we have

d &
:r=(;Jd—j;—fs(:wd—z’jf (5.3.11)

Equation (5.3.11) represents the internal twisting moment that will
develop in the cross section when the member is twisted. The first term
represents the resistance of the cross section to twist and the second term
represents the resistance of the cross section to warp. Thus, for the
I-section shown in Fig. 5.5, the applied twisting moment is resisted solely
by St. Venant torsion at the free end (z = L) where the cross section is
free to warp. However, further away from the free end, warping is
partially restrained, so both St. Venant and warping restraint torsion will
be present. The proportion of the applied twisting moment transmitted
by these two forms of torsional resistance varies. As we move toward the
fixed end, a greater and greater share of the applied torque will be
resisted by the warping restraint torsion. At the fixed end (z = {}), warping
is totally restrained and the applied torque will be transmitted completely
by the warping restraint torsion.

From the above discussion, it can be seen that St. Venant torsion is
always present when a member is subjected to twisting and rotates. On
the other hand, warping restraint torsion will develop if a cross section is
prevented from warping when it is being twisted. Warping restraint
torsion will also develop in the cross sections if the twisting moment is
not uniform along the length of the member. This is because under a
non-uniform torsion, different cross sections will warp by a different
amount. The differential axial deformation between two adjacent cross
sections will induce axial stresses, giving rise to a warping restraint
torsion.
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5.4 LATERAL BUCKLING OF BEAMS

When a beam is bent about its axis of greatest flexural rigidity,
out-of-plane bending and twisting will occur when the applied load
reaches its critical value, unless the beam is provided with a sufficient
lateral support. For a geometrically perfect beam, this critical load
corresponds to the point of bifurcation of equilibriurm when in-plane
bending deformation of the member ceases to be stable and out-of-plane
bending and twisting deformations become the stable configuration of the
member. Here, as in the case of a column, to find the critical load of the
beam one must first establish the equilibrium conditions of the beam in a
slightly deformed configuration. The critical or lateral buckling load is
then obtained as the lowest eigenvalue satisfying the characteristic
equation of the differential equations. The following examples will
illustrate the procedure for determining this critical load. The assump-
tions used in the following examples are the following:

1. The beam is geometrically perfect.

3. The applied loads act solely in the plane of the weak axis (or in the
plane of the web in the case of an I-beam).

3. The deflection of the member is small.

4, The geomelry of the cross section does not change during buckling.

Example 5.1, Simply Supported Rectangular Beam Under Pure Bending
Figure 3.10 shows a simply supported beam of narrow rectangular cross
section subjected to a pair of equal and opposite end moments acting in
the y-z plane. The simple support condition used in the context of
lateral instability of beams means that the ends of the beam are free to
rotate about the two principal axes, the x and y axes, but rotation of the
end cross section about the z axis is prevented. Under the action of the
applied moment, the beam will bend in the y-z plane. This type of
bending is known as the in-plane bending. As the moments are increased,
a stability condition will be reached at which the in-plane deformation of
the beam ceases to be stable and a slightly deflected form that
correspends to the out-of-plane bending and twisting of the beam
becomes possible. The beam is stable and favored with this new
configuration. The lowest load at which this condition occurs is the
critical load for the beam.

soLutioN: To determine this critical load, it is necessary to establish the
equilibrium equations governing this slightly deformed stable configura-
tion of the beam. Referring to Fig. 5.10, in which the slightly deformed
configuration of the beam is shown, we note that for any cross section
three different displacement components are needed to define the
deflected position of the cross section. They are the in-plane displace-
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FIGURE 5.10 Lateral buckling of a narrow rectangular strip under uniform
moement

ment v, the out-of-plane displacement », and the rotation of the cross
section y. To facilitate the analysis, we establish two sets of coordinate
axes. The x-y-z axes are fixed coordinate axes that are fixed to the
original or undeformed position of the member; the x'-y’-z' axes are
local coordinate axes that are fixed with the cross section that moves with
the deflected position of the member. The x' and y' axes coincide with
the principal axes of the cross section. The z" axis is always tangent to the
center lines of the deflected position of the member. The procedure to
establish the poverning differential equations is very similar to that
presented in Chapter 2 for columns. First, we establish the expressions
for the moments induced by the external loads at an arbitrary section z.
These externally induced moments at section z are called external
moments. The differential equations are then obtained by equating these
external moments to the corresponding internal resisting moments of the
cross section. The only difference between the solution process presented
in this chapter and that discussed in Chapter 2 is that, in the earlier
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chapter, only in-plane bending of the member is considered, whereas
here both in-plane and out-of-plane bending, as well as twisting, will be
considered. Thus, the lateral torsional buckling problem will be more
complex than the in-plane buckling problem, as the former is a
three-dimensional problem, whereas the latter is a two-dimensional
problem.

For the beam shown in Fig. 5.10, the components of external moments
acting on a cross section with a distance z from the origin with respect to
the x-y-z coordinates are; (My)ew= My, (My)ex = (M.)en=0. Figure
S5.11a-c shows the moments and moment componeats in the three
mutually perpendicular planes. In this chapter, for convenience, we use a

FIGURE 5.11 Components of moments
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right-handed screw rule to represent the moment vector. For example,
imagine now a right-hand screw whose axis is colinear with the x axis. If
this screw were turned in the direction of M, at the positive face z = L., as
shown in Fig. 5.10, it would tend to advance in the direction of the
positive x axis. Because of this, the applied moment M, is positive and
represented by the positive moment (M,).,, in Fig. 5.11 in the positive x
direction, This sign convention for moment is called the right-handed
screw rule. Using this sipn convention for moment, the moments acting
on the cross section in the slightly deflected position with respect to the
x'-y'-z’ coordinate system can now be obtained directly from Fig. 5.11.

(Mx')l:xl: = (M‘)ul = MU (5'4' 1)
(My')cxl = _Y(Mx)cxt = —yM, (542)
du du
Vexg = — =-— .4
(Mz Jex1 dZ (Mx)en dZ MD (5 4 3)
The corresponding internal resisting moments are
d*v
(Mx')im - _Elx ;i; (54 4)
d*u
(My)in = E1y s (5.4.5)
_ oy
(M )imi = GJ (5.4.6)

In writing Eq. (5.4.4) and (5.4.5), it is tacitly assumed that the angle of
rotation ¢ is sufficiently small so that the curvatures and moment of
inertia in the y'-z' and x’-z' planes may be represented by their
corresponding values in the y-z and x-z planes, respectively. The minus
sign in Eq. (5.4.4) indicates that a negative curvature in the y'-z* plane
will give a position moment using the right-handed screw rule. Equation
(5.4.6) follows from Eq. (5.3.11) with C,=0. For a narrow rectangular
section, warping of the cross section is negligible and so warping restraint
torsion can be neglected. Equating the corresponding external and
internal moments, we have

d*

Elxd—zz_}-MO:O (547)
d’u
EI,.P + M, =0 (5.4.8)
dy  du
GJ___'MO=O (54.9)

dz dz
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An inspection of these equations shows that the first equation contains
only the variable v and is independent of the other two equations. In
fact, this equation describes the in-plane bending behavior of the member
that occurs before lateral instability. It is not important for the
out-of-plane lateral torsional buckling behavior in a small displacement
buckling analysis. The buckling behavior of the beam is described by the
last two equations, which are coupled, as they both contain  and y as
varniables. If we differentiate Eq. (5.4.9) once with respect to z and
substitute the result into Eq. (5.4.8), the two equations can be combined
to give

ELGId*y
— =+ yMy=0 5.4.10
MO dzz 7o ( )
Upon rearranging, and denoting k* = M§/Ef,GJ, we have the differential
equation
&y .,
—+ = 5.4.11
dzz k Y 0 ( )
which has the same form as Eq. (2.2.12) and hence the general solution is
y=Asinkz + Bcoskz (5.4.12)

Since rotations of the end cross sections are prevented, the boundary
conditions

v =0 and y(L)=0 (5.4.13)

apply. Using the first boundary condition in Eq. (5.4.12), we have B =0,
and using the second boundary condition, we have

AsinkL =0

If A=0, Eq. (5.4.12) becomes a trivial solution. Thus, for a nontrivial
solution, we must have

sinkL=0 or kL=nx (5.4.14)
Since k* = My/EL,GJ, we can obtain
Mo=""VELGI (5.4.15)

The critical moment is the lowest value of M, that will cause a lateral
torsional buckling. It can be obtained by setting n =1 in Eq. (5.4.15), so

M, = % VELGJ (5.4.16)

It is important to note that the critical moment is a function of both the
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lateral bending stiffness EI, and the torsional stiffness GJ. Thus, the
coupling effect of out-of-plane deformation and twisting is manifested in
the result.

Equation (5.4.16), although derived for a narrow rectangular section,
is also valid for box sections composed of narrow rectangular shapes.
Like narrow rectangular cross sections, warping for box sections are
negligible and so warping constant C, can be set to zero. However, for
box sections, M, will be much higher due to a significant increase in
values of I, and J.

Example 5.2. Simply Supported I-Section Under Pure Bending
A simply supported I-beam subjected to a pair of equal and opposite end
moments applied about the x axis is shown in Fig. 5.12.

soLuTioN: Here, as in the preceding example, two sets of coordinate
axes, x-y-z and x'-y'-z’, are used to facilitate the analysis. Since no
change has been made in the external loadings or support conditions,
Eqgs. (5.4.1) to (5.4.3) are still applicable here. As to the internal resisting
moments, the two equations describing the in-plane [Eq. (5.4.4)] and
out-of-plane [Eq. (5.4.5)] bending behavior of the member are also
applicable here. In fact, the only equation that needs to be modified is
Eq. (5.4.6). For an I-section, in addition to St, Venant torsion, there is a
warping restraint torsion; hence, the total torsional resistant offered by
the I-section is
dy

ay
(Mz')im = GJE;'_ Ecwgz_;; (54 17)

FIGURE 5.12 Lateral buckling of an I-section under uniform moment




5.4 Lateral Buckling of Beams 323

By equating the corresponding external and internal moments, the
governing differential equations for the I-section under pure bending are
obtained

d2
El d’j+Mg-0 (5.4.18)
d’u
Bl,~—5+ My =0 (5.4.19)
i" - ECw d: M,=0 (5.4.20)

Again, the first equation is of no interest to us, as it describes the
in-plane behavior of the beam before the lateral buckling. The
differential equation describing the behavior of the beam at lateral
torsion buckling is obtained by combining Egs. (5.4.19) and (5.4.20)

d? a’y MU
EC,———GJ =0 5.4.21
Denoting
GJ M3
=— d b= 4.
2EC, " ELEC, (5.4.22)
Equation (5.4.21) can be written as
d*y d*y
—E 25— by= 4,
127 a ) by=0 (5.4.23)

Equation (5.4.23) is a fourth-order linear differential equation with
constant coefficients, the general solution is

y=Asinmz + Bcosmz+ Ce™+ De™™ (5.4.24)

in which m and n are positive, real quantities defined by

m=V—a+V(@*+b), n=Va+Via +b) {5.4.25)

The arbitrary constants 4, B, C, and D can be determined from the
conditions at the ends of the beam. Since rotation of the cross section at
the supports is prevented, we must have

¥(0)=0, y(L)=0 (5.4.20)

The other two boundary conditions can be obtained as follows: Since
warping is unrestrained at the ends of the beam, no moments will be
developed in the flanges. By setting M; in Eq. (5.3.1) equal zero and by
differentiating Eq. (5.3.5) twice, it can easily be shown that the following
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conditions must be satisfled.

d*y d*y
el a2, (5.4.27)
From the first conditions of Eqs. (5.4.26) and (5.4.27), we obtain
B=0, C=-D (5.4.28)

and from the second conditions of Eqs. {5.4.26) and (5.4.27), we obtain

the simultaneous equations

AsinmL — 2D sinhnL =0
- 5 (5.4.29)
Am sinmL +2Dnr"sinhnl. =0

For a nontrivial solution, the determinant of the above equations must
vanish

(sin mL)(sinh nL)(2m* +2n%) =0 (5.4.30)

Since m and n are both positive nonzero quantities, and sinh #L is zero
only at nL =90, it follows that for a nontrivial solution we must have

sinmL =0 (5.4.31)
The smallest value of m satisfying Eq. (5.4.31) is

T
=— 5.4.32
m=7 (5.4.32)
Using Eq. (5.4.25), we have

—a+ V@ b) = (2_’)2 (5.4.33)

and in view of Eq. (5.4.22), we have

Moo = %\/E[YGJ VI + W (5.4.34)
where
_Z EG
W= Vo (5.4.33)

It should be noted that the critical moment depends not only on the
quantities £I; and zJ, but also on EC,. In fact, the second square root in
Egq. (5.4.34) represents the contribution of warping to the torsional
resistance of the beam. For a rectangular or box section, C, is negligible,
so the second square root becomes one and Eq. (5.4.34) reduces to Eq.
{5.4.16). For an I-section, M. will increase if the distance between the
two flanges increases. This observation will become evident if one refers
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to Eq. (5.3.8), the warping constant C, is proportional to the square of
the depth s of the section. Thus, if J; remmains unchanged, an increase in h
will increase C,, and, so, M,,.

In developing Eq. (5.4.34), it has been assumed that the in-plane
deflection has no effect on the lateral torsional buckling behavior of the
beam. This assumption is justified when the flexural rigidity EI, is much
larger than the flexural rigidity £I, so that the in-plane deflection will be
negligible compared with that of the out-of-plane defiection. If both
rigidities are of the same order of magnitude, the effect of bending in the
vertical y-z plane may be important and should be considered in
calculating M. An approximate solution that includes the effect of
in-plane deflection is given by Kirby and Nethercot® as

M, =;—f ﬂjﬂr VI + W9 (5.4.36)
where
L=1—-(L/I) (5.4.37)

Note that if I, =1, I, becomes zero. Then, From Eq. (5.4.36) it can be
seen that M. becomes infinity. If I,> I,, I, becomes negative and M,
becomes imaginary. So, for the cases when [, equals or exceeds I, no
solution exists. Thus, one can conclude that the lateral torsional buckling
of beams is possible only if the cross section possesses different bending
stiffnesses in the two principal planes and the applied [oads act in the
plane of the weak axis. As a result, lateral torsional buckling will never
occur in circular cross sections or square box sections in which ali the
component plates have the same thicknesses.

5.5 BEAMS WITH OTHER LOADING CONDITIONS

In the preceding section, the critical moment for a beam under equal and
opposite end moments has been derived. The moment is constant for the
entire length of the beam, and so the resulting differential equation
describing the equilibrium conditions of the beam at its slightly deformed
state is linear with constant coefficients. Beams in practical situations will,
of course, be subjected to a wide variety of loadings, thus producing
non-uniform moment along the length of the beam. If the moment in the
beam js not constant throughout, the resulting governing differential
equation will have variable coefficients. For such cases, closed-form
solutions are not available and recourse must be had to numerical and
approximate procedures to obtain the critical loads. Some classical
numerical solutions for the critical loads of members with non-uniform
moment have been presented in the book by Timoshenko and Gere,? as
well as in the papers by Massonnet, Horne,” and Salvadori,® among
others.
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In this section, we will present a simple but effective method to take
into account the effect of non-uniform moment on the critical lateral
buckling loads of beams. Here, as in the beam-column case, the approach
is based on the equivalent moment concept and the accuracy of the
approach has been found to be quite sufficient for most practical cases.

5.5.1 Unequal End Moments

If a beam is subjected to end moments that are unequal in magnitude
(Fig. 5.13), the moment in the beam will be a function of 2.
Consequently, the resulting govemning differential equation will have
variable coefficients. Therefore, a numerical procedure, involving the use
of series or special functions, 15 necessary to obtain solutions. The
procedure is, evidently, quite cumbersome. Fortunately, for the purpose
of design, it has been demonstrated by Salvadori® that the effect of
moment gradient on the critical moment can easily be accounted for by
the use of an equivalent moment factor G,. The critical moment for the
beamn in Fig. 5.13 can be obtained from

Mcr = Cancr (5.5.1)

FIGURE 5.13 Beam subjected to unequal bending moments
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where
M, =Eq. (5.4.34)
M, M
c_175+105( )+03( “‘) <23 5.5.2
b M, Mg (5:3.2)

in which (M,/Mg) is the ratio of the numerically smaller to larger end
moments. Its value is positive when the beam bends in double curvature
and is negative when the beam bends in single curvature.

A comparison of the theoretical value of M., with that evaluated from
Eqgs. (5.5.1) for various values of M, /Mg is shown in Fig. 5.14. One can
see that Eq. (5.5.1) gives a conservative and quite accurate repre-
sentation of the actual critical moment. It should be noted that the
concept of equivalent uniform moment used here for beams is very
similar to that used earlier in Chapter 3 for beam-columns. The physical
meaning of C, here is that it represents the amount of increase in the
critical uniform moment M,., which causes lateral instability, as would
the given unequal end moments also cause such instability, Since the
moment ratio M, /My is always between —1 and 1, it follows from Eq.
(5.5.2) that G, is always greater than unity. This means that the critical
moment M. for unequal end moments will always be larger than the
critical moments M, for equal and opposite end moments. Thus, the
equal and opposite end moments loading case represents the most severe
loading condition for the beam.

FIGURE 5.14 Comparison of theoretical results with Eq. (5.5.1)
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5.5.2 Central Concentrated Load

If a simply supported beam is loaded at midspan by a concentrated force,
the moment diagram is bilinear, as shown in Fig. 5.15. Here, as in the
case of unequal end moments, the differential equation will contain a
variable coefficient.

As an illustration, consider a simply supported I-beam subjected to a
concentrated force P applied at the shear center of the middle cross
section (Fig. 5.16). To derive the governing differential equation, we
need to relate the externally induced moments acting on the beam at its
slightly deformed (buckled) configuration to its internal resistance. The
procedure is facilitated by using the two coordinate systems: a fixed
coordinate (x-y-z) system and a local coordinate (x'-y'-z') system as
shown in Fig. 5.16. As the beam buckles laterally, vertical reactions P/2
and torsional reactions Pu,/2, where u, is the lateral out-of-plane
displacement of the shear center of the middle cross section, will develop
at the supports. By considering a cross section at a distance z from the
origin, the various components of external moments acting on that cross
section with respect to the x-y-z coordinate are, using the right-handed
screw rule for the moment vector,

P/L
(M)ea=% (32 (553
(My)em =0 (5.5.4)
(Mz)cxt= ng(um - u) (555)

Referring to Fig. 5.17, we see that ‘the components of external
moments acting on the cross section of the deformed beam with respect

FIGURE 5.15 Simply supported
beam loaded at midspan

L/z | LIz

In-plane Moment Diagram
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L/z2

FIGURE 5.16 Lateral buckling of a simply supported 1-oeam loaded at midspan

to the x'-y'-z’ coordinate are

du P/L du P
(My)en = (My)ers — Z (M.)exd —E (E— z) + EE (tm—u) (5.5.6)
My Jen = — ¥ (Mo)ere ~ 2 (01
( y')cxl"" Y M Jext dz zJext
P/L dv P
——ya(i—z)+55(um—u) (5.5.7)
(M om = (Mo + 2 (11,
2 Jext z)cxt dZ xJext
P duP (L
= —E(um—u)-}'aa- (E—Z) (558)

The minus sign for the terms dv/dz and du/dz in the figure accounts for
the fact that the slopes dv/dz and du/dz are negative with a positive z
(see Fig. 5.16).

The internal resisting moments are

d*v
(Mx')int = _E-lx E (559)
d?u
(My)w=El, (5.5.10)
d d?
(M) = GI L —EC,5TL (5.5.11)

dz dz?
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FIGURE 5.17 Components of moments

The minus sign in Eq. (5.5.9) indicates that the positive moment (M, ),
produces a negative curvature dv/dz*, based on the right-handed screw ,
rule for moment. I

By equating the corresponding external and internal moments and ;
neglecting the higher order terms, we obtain the following equilibrium g
equations 1

dv P
R .
Lo 2(2 z) 0 (5.5.12)
d* P/L
E!ya,!;-i-y (—2-—z)=0 (5.5.13)

d P duP (L
'd__ECw + ( m~ )___(
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Note that the second term in Eq. (5.5.6) and (5.5.7) is neglected in
writing Eq. (5.5.12) and (5.5.13), becawse the quantities (du/dz),
(dv/dz), and (u,, — i) are all small, The reader should recognize that Eq.
(5.5.12), which describes the in-plane bending behavior of the beam, is
uncoupled with the other two equations. Therefore, it is not important in
the present buckling analysis. The lateral torsional buckling behavior of
the beam is described by Eq. (5.5.13) and Eq. (5.5.14). By eliminating u
from Egs. (5.5.13) and (5.5.14) and noting that du/dz =0, we can write
a simple differential equation as

d'y dy 1 [P(L )] B
EC".,dz4 Gja'zz+EIy > {3 z)|y=0 (5.5.15)

This differential equation has a variable coefficient in its third term. The
solution for this differential equation can be obtained® by the method of
infinite series. The results are plotted as solid lines in Fig. 5.18. The
curves correspond to the cases when the load acts on the upper flange, at
the shear center, and on the lower flange of the cross section,
respectively. ‘

The case where the load acts on the upper flange is the most
detrimental, because of the increase in the torque arm as the beam
buckles laterally. On the other hand, the least detrimental case is when
the load acts on the lower flange; this is because of the decrease in the
torque arm as the beam buckles laterally. These observations can be
explained with reference to Fig. 5.1. If the load acts on the upper flange,
Eq. (5.5.5) will become

(Mz)cxl = - g (um + Y%h - u) (5516)

whereas, if the load acts on the lower flange, Eq. (5.5.5) will become

P h
(M)ex = —3 (um - YT — u) (5.5.17)

where u,, and y,, are the out-of-plane lateral displacement and twist of
the cross section at the beam’s midspan, respectively.

The term y,h/2 (or —yy,h/2) represents the amount of increase (or
decrease) in the torque arm of the applied load causing an increase (or
decrease) in the external moment (M_)..,. Evidently, if (M,)., is larger,
P will be smaller and vice versa. For the purpose of design, it is
convenient to approximate the theoretical values of P, by Eq. (5.5.1).

M,=——= ChMucr (5518)
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FIGURE 5.18 Comparison of theoretical and approximate solutions

with

AB  for load at bottom flange
C.=94 for load at shear center (5.5.19)
A/B for load at top flange

The values A and B are given by Nethercot and Rockey’ as
A=1735 (5.5.20)
B=140.649W —0.180W" (5.5.21)

in which W = (z/L)V(EC,,/GJ).
The approximate solutions for P, using Eqs. (5.5.18) to (5.5.21) are
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plotted as dotted lines on the same figure. It can be seen that the
approximate solutions give an excellent representation of the theoretical
exact solutions.

5.5.3 Other Loading Conditions

The effect of the distribution of load along the unbraced length of a
simply supported beam on its elastic lateral torsional buckling strength
has been investigated numerically by a number of researchers. The
results are discussed in various books,*®® and papers.'®>** For simplicity,
approximate solutions in the form of Eq. (5.5.1) are often used to obtain
the critical loads. The approximate solutions for some commonly
encountered loading cases with the loads applied at the shear center of
the cross section are summarized in Table 5.2a. By using the expressions
for M_. in the third column and the value of G, in the fourth column,
together with M, given in Eq. (5.4.34), the corresponding approximate
values for the critical loads can easily be computed from Eq. (5.5.1).

For loadings whose moment diagrams do not resemble any of those
given in Table 5.2a, an empirical formula given by Kirby and Nethercot®
for G, can be used:;

12
- 3(M1/Mmux) + 4(M2/anx) + B(MS/an.x) +2

where M;, M., and M; are the moments at the quarter point, midpoint,
and three-quarter point of the beam, respectively, and M., is the
maximum moment of the beam, as shown in Table 5.2b (Problem 5.4).
If the location of the lead is not at the shear center, the values of the
critical loads will be different. For the two load cases shown in Table 5.3,
Nethercot and Rockey’ and Nethercot'® have proposed expressions for
C, to be used in Eq. (5.5.1) to give approximate values for the critical
loads. Figure 5.19 shows a comparison of the theoretical critical load
obtained by Timoshenko and Gere? for the case of uniformly distributed
load with the approximate solutions proposed by Nethercot and Rockey’
(Table 5.3). Good agreement between the two selutions is gbserved.

G (5.5.22)

5.6 BEAMS WITH OTHER SUPPORT CONDITIONS

The discussion heretofore pertains only to beams that are torsionally
simply supported. That is, the ends of the beams are free to rotate and
warp about the wealk axis, but are restrained against rotation about the
centroidal axis. A change in support conditions will undoubtedly have a
pronounced effect on the resistance of the beam to lateral torsional
buckling. In this section we shall examine the effects of support
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Table 5.2 Values of G, for Different Loading Cases (All Loads are Applied at

Shear Center of the Cross Section)
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Loadinga Bending Moment Diagrams Mer Cy
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—  theoretical {Timoshenko and Gare)

~-———approximata {Nethercot and Rockey)
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2 ad

FIGURE 5.19 Comparison of theoretical and approximate solutions

conditions on the critical loads and lateral buckling behavior of beams,
and, in particular, the use of the effective length concept to account for
the support conditions.

5.6.1 Cantilever Beams

The critical lateral buckling loads for cantilevers are different from that of
simply supported beams because of the obvious difference in boundary
conditions at the supports. The elastic buckling load for a cantilever
under a uniform moment caused by an end moment M, applied at the
free end can be obtained directly from the solution of the simply
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supported beam by imagining the beam to be consisted of two cantilevers
of equal length joined together at the fixed ends. Thus, the critical
moment for the cantilever beam can be obtained from Eq. (5.4.34) by
replacing L by 2L

T a-EC,
Mo = (2 ) (VELGT 1+ oDy =] (5.6.1)
For other loading conditions, recourse must be made to numerical
procedures to obtain solutions.'”'® Figures 5.20 and 5.21 show the results
for two load cases: cantilever beam with a concentrated load at the free
end and cantilever beam with a uniform distributed load. For both of
these load cases, the figures present the critical loads corresponding to

FIGURE 5.20 Ciritical loads of a cantilever subjected to a concentrated force at
the free end

g
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FIGURE 5.21 Critical loads of a cantilever subjected to uniform distributed load

loading on bottom flange, at the shear center, and on the top flange.
These plots are applicable to cantilever beams for which the root or the
fixed end is completely fixed against lateral displacement and warping
while the tip or the free end is completely free. For other support

conditions, Nethercot'® has shown that the equation
7T n°EC,
WEANCTON ro.x
KL Y (KLY'GJ (56.2)

gives a conservative estimate of M,, for most applications. In Eq. (5.6.2}, K
is the effective length factor of the beam. The values of K for various restraint
conditions at the root and at the tip of the cantilever are given in Table 5.4.
The table is applicable to both end load and uniformly distributed load cases.
Equation (5.6.2) is also applicable to other support conditions so long as K is
properly defined, as shown in the following sections.
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Table 5.4 Effective Length Factars for Cantilevers
with Various End Conditions (Adapted from Ref. 16)

[ Restraint Conditions Effective Length
All ath
Al rool Al tip Top flange ather

loading casas
’:Eg I AL 0.8L

7
g Ig 2.5L 1oL
’ In—é 2.5L 0.9L
:I:j .51 0.8L
r—i 7.5L 2.7L

5.6.2 Fixed-Ended Beams

If the ends of the beams are fixed against lateral displacement and
warping but free to rotate about the strong axis (Fig. 5.22), the boundary
conditions at the ends for lateral bending are

deco= =2
r=0= U|z=p dZ
and for twisting and warping

dy

_du
::U_dz
_d
=0 dz

=L

=0 (5.6.3)

=0 . (5.6.4)

If the beam is under a uniform moment, the differential equation [Eq.
(5.4.23)] and the general solution [Eq. (5.4.24}] for the simply supported
beam under a uniform moment, which were presented in Section 5.4, are
still applicable. By using the boundary conditions in Eq. {5.6.4), it can be
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Warping and Lateral Bending in the
i x—2 Plane Provented at Both Ends
X

Lateral Banding in the y-~z
Plans Parmitted at Both Ends

FIGURE 5.22 Fixed-end beams

shown that the characteristic equation is
(mz —n?
2mn

) sinmL sinh nL + cosmL coshnL —1=0 (5.6.5)

where m, n are defined in Eq. (5.4.25).

Unlike the characteristic equation for the simply supported beam, for
which a solution is readily obtained [Eq. (5.4.31)], the solution for Eg.
(5.6.5) can only be obtained by trial and error. However, an easier way
to obtain the critical moment for this case is to realize that the inflection
points occur at a distance L{4 from the ends. Thus, the critical value for
the moment can be obtained by simply replacing L in Eq. (5.4.34) by

L/2, giving
n n>EC,
=—VEI e 5.6.
Mer =15 VELGY V(l +(L/2)ZGJ) (5.6.6)

Comparing Eq. (5.6.6) with Eq. (5.6.2) gives K=1/2 for this
fixed-ended beam case under a uniform moment. Figure 5.23 shows a
plot of Eq. (5.6.6). Also shown in the figure is the critical moment for the
corresponding simply supported beam. It can be seen that the critical
moment for a fixed-ended beam is considerably higher than that of a
simply supported beam.

For other types of loadings that produce non-uniform distribution of
moments along the length of the beam, the differential equations will
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FIGURE 5.23 Comparison of critical moments for a lateral torsional simply
supported and lateral torsional fixed beam

-+

have variable coefficients and recourse to numerical procedures is
inevitable. If the fixed-ended beam is subjected to a concentrated load at
midspan or if it is subjected to a uniformly distributed load along the
entire unbraced length, Nethercot and Rockey’ have presented the
following equation for the critical moments

M. =C.M,.. {5.6.7)

where
P.L
— for the concentrated load case

M., = (5.6.8)

w. L2

for the uniformly distributed load case
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Table 5.5 Expressions of A and B for a Fixed-End Beam [W = (x/L)VEC./GJ]

—
Loed Case A 8

il L LB43+1.7TIW-0.405W 2 1+0.625W-0.109w?
I

e ] Lz L9161 B51W-0,424W 7 140,929 W-0,46GW 2

and

AB  for bottom flange loading
C.=14 for shear center loading (5.6.9
A/B for upper flange loading

The expressions for A and B are given in Table 5.5 and M, is given by
Eq. (5.4.34). It should be mentioned that G, used in Eq. (5.6.7) is
different from G, used earlier in Eq. (5.5.1). The term €, only accounts
for the effect of moment gradient cn the critical lateral buckling loads,
whereas the term G, accounts for both the effect of moment gradient and
end conditions of the beam. _

The effective length KL for the beams shown in Table 5.5 can be
obtained by equating Eqs. (5.6.7) with (5.6.2) and solve for the effective
length factor K

4(Cb5 t:u:r)2 ECw

k= ﬁji(—?‘{ \/(H_EIGJ GJ)} (5.6.10)

Note that the effective length factor depends on a number of parameters.
These include the unbraced length L, the material properties £ and G,
the cross-section geometry C, and J, the types of loadings, and the
location of the load with respect to the shear center of the cross section.
Since Eq. (5.6.10) is rather cumbersome to use for practical purpose, it is
commeon to use a K-factor of unity in design.

Ii the restraint conditions are different with respect to lateral bending
and twisting, the effective length factor of the beam that corresponds to
lateral bending K, and the effective length factor that corresponds to
twisting K, will be different. In such cases, for beams under a uniform
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Table 5.6 Effective Length Factors for Beams Under Uniform Moment with
Various Boundary Conditions (Adapted from Ref, 19

Boundary Conditions
- % e
z =10 z =1L
u=u'"=yvy=y"=0 u=u"=yv=vy"=0 1,000 1,000
u=u'=y=y"=10 u=u'=v=vy" =0 0.904 0.693
u=u"=vy=vy"=0 u=u'=y=y"=20 0.626 1.000
u=u'=v=y"=0 u=u'=y=y'=0 0.693 0.693
u=u'=y=vy"'=0 u=u=y=y"=120 0.883 0.492
u=u'=y=y"=20 u=u'=y=vy"'=20 0,431 0.693
u=u'"'=y=vy"=49 u=u"'=y=v"=20 0.492 0.492
u=u' =y=y"=0 usu'=y=y"=0 0.434 1.000
u=u'=y=vy"=0 u=u=y=y =0 0. 606 0.492
moment, the critical moment is expressed as
T a-EC,
Moc,—(m)m (1+—(K1L)2GJ) (5.6.11)

Values for K, and K, for many boundary conditions with respect to
lateral bending and twisting respectively are given by Vlasov'” and are
shown in Table 5.6. In the table, a prime represents differentiation with
respect to z. For simplicity, the values for K, and K, can be taken as the
following:

1. 1.00 if both ends are simply supported
2. 0.70 if one end is simply supported and the other end is fixed
3. 0.50if both ends are fixed

However, if the degree of end fixity is questionable, a conservative
measure is to use one for the effective length factors.

5.6.3 Other End Conditions

If the ends of the beams are prevented from warping but are unrestrained
in bending about the weak axis (Fig. 5.24), the out-of-plane conditions
for lateral bending will be

= dg? B

=0 dzl

=0 (5.6.12)

z=L
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FIGURE 5.24 Warping prevented—Ilateral bending—permitted beam

and for twisting and warping

&

_dy
T dz

ey (5.6.13)

Yle=o=7l:=r

z=L

The critical loads for this case are given by Nethercot and Rockey’ in
the form of Eqgs. (5.6.7) to (5.6.9) for the two load cases given in Table
5.7. The values for A and B to be used in Eq. (5.6.9) are also given in the
same table.

Table 5.7 Expressions of A and B for a Warping Prevented but Lateral
Bending Permitted Beam [W = (x/L)VEC,/CJ]

Load Cass A B

W

m 1.2-0.402W+0.416W* 1+0.571W~0,225W7
L \

I S

z _ 2
Lz [ Lz 1,47+ 0.463W+0.485W 1°0.61BW-0.217W
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J Warping Permitted But Lateral Banding

In the x—z Plane Prevented at Both Ends
X

Lateral Bending in the y-z
Plane Permitied at Both Ends

Y

FIGURE 5.25 Warping permitted—lateral bending—prevented beam

If the ends of the beams are prevented from bending about the weak
axis but are free to warp (Fig. 5.25), the out-of-plane boundary
conditions for lateral bending will be

du du
Uemo = ttlemy =7 B B (5.6.14)
and for twisting and warping
dy dy
Y|z=o=y|z=L=;,—Z—z b= ‘L=0 (5.6.15)

Equations (5.6.7) to (5.6.9) are also applicable.” Table 5.8 gives the
values of A and B in accordance with Eq. (5.6.9} for the two load cases
shown.

An alternative approach to calculate the elastic critical loads for beams
of doubly symmetric sections with out-of-plane bending and torsional
simply supported as well as fixed-ended conditions are presented by
Clark and Hill.?® In their approach, the critical moment is expressed in
the simple form

M,.= % VELG]J (5.6.16)
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Table 5.8 Expressions of A and B for a Warping Permitted but Lateral
Bending Prevented Beam [W = (x/[)VEC,/G/]

Lond Casg A 8
1.9‘0,005“’-0,!20“’2 IfCI,El:lS‘n‘v'—Cl.H]lIlb’W2
P
iz | i 2.0+0.305W-0.074W" 1+ L047W-0.207w?
|
L ] |
where
T T\ EC, T E
c=ag iVl (7 (e ] eV
UK KL GJ(Z)CzKL GJ
(5.6.17)

The coefficient C, accounts for the type of load and support conditions
and the coefficient C; accounts for the location of the load vertically with
respect to the shear center of the cross section. The plus sign in Eqg.
(5.6.17) is used if the load is applied at the bottom Hange and the minus
is used if the load is applied on the top flange. C, is zero if the load is
applied at the shear center or if the load is an end moment loading.

Values for C; and G, for various load cases are tabulated in Table 5.9.
Note that for the end moment load cases, C) is equal to (, and is
obtained from Eq. (5.5.2).

5.6.4 Continuous Beam

In the previous sections it has been assumed that the beams were
supported laterally only at the ends. When a simply supported I-beam
subjected to a uniform moment has an additional lateral support at its
midspan, the lateral buckling mode will be a complete sine wave. The
critical buckling moment can therefore be obtained directly from Eq.
(5.4.31) by using the second lowest value of m in the solution, that is,

_=
L

_ T T°EC,
My = 75 VELGJ \/(1 +——(L 27 GJ) (5.6.19)

m

(5.6.18)

giving
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Table 5.9 Values of C, and C, in Eq. (5.6.16) (Adapted from Ref. 20)
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Axis al Enda

£
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—— 8 Flrod 1.0 0.04

2
L "u_'- KU 8impla aupport .0 LD D42

Cantllever Beamp

‘ P warping fa-
", g pL} [[E[P' srrained at L0 1.3 D.04

supported and

w Yrarpinp ra

12, § wl] = .0 an
@ T! alrained at 1

supporied end

*Approximate minimum veluoa lor GI are glven, Aange ol valuss are glven In Ael.5,20

For other types of loadings, such as a concentrated load at midspan or
a uniformly distributed load over the entire span of the beam, numerical
solutions for the critical loads are available.* However, for simplicity,
Egs. (5.6.7) to (5.6.9) can be used again.” Table 5.10 shows the
applicable values of A and B for these two loading cases.

For a continuous beam with more than two spans, partial end restraint
will develop between adjacent spans. The determination of the lateral
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Table 5.10 Expressions of A and B for a Two-5pan Continuous Bearn with
Lateral Support at Center and Restraint Equal at Both Ends [W = {(x/L)WVEC,/ G/l

Load Case A B

w
i i 2.093+3.117W-0.847W? LO73+0.044W

Lz | e 2.95+4,070W-1.743W" 1
i

Top View

buckling load for this type of continuous beam is beyond the scope of this
book. In general, the lateral buckling load depends on the relative
stiffness of the segments, the type and relative magnitude of the loads on
the beam, and the type of bracing or constraint used for the intermediate
supports. The readers are referred to the papers by Salvadori* and
Hartmann? and the books by Trahair®® and by Chen and Atsuta® for a
detailed discussion of the subject. For design purpose, it is commen to
evaluate the critical load for each span separately by assuming the ends of
the span are simply supported. The lowest value of the critical loads
obtained for each individual span will furnish a conservative estimate of
the critical load for the continuous beam,

5.7 INITIALLY CROOKED BEAMS

In deriving the differential equation for the lateral buckling of beam
under a uniform moment in Section 5.4, one assumption we used is that
the beam is geometrically perfect. Beams in reality are seldom perfect,
the presence of initial curvatures and twists will cause them to bend and
twist at the beginning of loading. In this section, we shall examine the
lateral buckling behavior of such beams.

Consider a simply supported beam of narrow rectangular cross section
subjected to an equal and opposite end moment M. The beam has an
initial out-of-straightness and twist given by

. 71
1y = dy sin T (5.7.1)
7
Yo= 0ty sin (5.7.2)

L
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where 8, and 8, are the initial out-of-straightness and twist at the
midspan of the beam, the out-of-plane bending and torsional equations
[Egs. (5.4.8) and (5.4.9)] become

d2
El,— S (r + vo)My = (5.7.3)
dy (du duu)
A ot =0 7.
G dz dz  dz Mo (5.7:4)

Differentiating Eq. (5.7.4) once and substituting the result into Eq.
(5.7.3), we obtain
dZ,}, 2

du
EIGJF-FYMZ EIMgdz

In view of Eqgs. (5.7.1) and (5.7.2), we can write Eq. (5.7.5) as

YoM (5.7.5)

d 2
ELGI "+ yM3 = EI,MU(SD(E) sin —
L L
— M3 sin’—rLf (5.7.6)
If 84 and 8, are related by

60 . Mocr

—=—— 5.7.7
8y mPEL[L? 677
where M, is given by Eq. (5.4.16), Eq. (5.7.6) can be written as
EI, GJ Y+ yM3 = —BUMU( A;:_'_ 1) sm—j‘:;:—lZ (5.7.8)
or
dy 5 (M ) . 7z
= = —k%6 =z 7.9
d22+ky k0, M0+1 sin — (5.7.9)

in which k%= M3/ELGJ.

The general solution of Eq. (5.7.9) consists of an homogeneous
solution and a particular solution. The homogeneous solution is given by
Eq. (5.4.12) and the particular solution is given by

iz iz
=Csin—+ D — .
C sin 3 + D cos T (5.7.10)
Substituting Eq. (5.7.10) into Eq. (5.7.9) and combining terms gives

2 M, k174
cle=(Z) [+ wal )i
{ I D M, + Sin 2

+{D[k2— (%ﬂ} cosiLz-=0 (5.7.11)
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Equation (5.7.11) can be satisfied for all values of z only if both the
coefficients of the sine and cosine terms vanish. That is

C= L (5.7.12)
e
L
and either
D=0 (5.7.13)
or T 2
R
k ( L) (5.7.14)

However, if Eq. (5.7.14) is valid, then the solution reduces to Egqg.
(5.4.16); which is not the case to be investigated here. So, Eq. (5.7.13)
must be valid. Thus the particular solution reduces to

2 MDCI’
(M)

M, ;
Yo= = sin%z- (5.7.15)
=
L

Realizing that A*=MG/EL,GJ and using M,.=(7x/L)VELGJ, Eq.
(5.7.15) can be simplified to

|: BUMO/MDCT :| . TZ

=T | sin—

1- (MD/Mm:r) L

Combining the homogeneous solution given in Eq. (5.4.12) and the

particular solution given in Eq. (5.7.16), the general solution to the
differential equation (5.7.9) can be written as

BDMH/Mocr
1- (M[]/Mcur)

Using the first boundary condition of Eq. (5.4.13), we aobtain
B=0

(5.7.16)

}sinE (5.7.17)

y=Asinkz+Bcoskz+[ 7

and the second boundary condition of Eq. (5.4.13) gives
AsinkL =0

Thus, either A or sin &L must vanish. However, if we let sin kL =0, we
are limiting the solution to Eq. (5.4.16); therefore, we must have A =0.
Hence, with A =8 =0, Eq. (5.7.17) becomes

_ [ BOMO/MDCI.'

. tZ
m} 51 — (57 18)

L
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Backsubstituting Eq. (5.7.18) into Eq. (5.7.3) or Eq. (5.7.4), and making
use of Egs. (5.7.1), (5.7.2), and (5.7.7), it can be shown that

|: 60M0/Mucr :| . JIZ

=|—————|sin—

1 - (MO/MDCT) L

The total twist and out-of-plane deflection are obtained by adding Eqgs.
(5.7.18) and (5.7.19) to Eqgs. (5.7.2) and (5.7.1), respectively,

(5.7.19)

1 74
Yiom =Yoo+ V= [m] B sin - Aryo (5.7.20)
and
1 74
Ugral = Ug + U = [Tm] dy sin T Aglig (5.7.21)
where

1

Ap=————
F 1- (Ml]/Mm:r)

(5.7.22)
is the amplification factor.

The reader should note the similarity of Eq. (5.7.22) and Eq. (2.6.20).
An expression similar to that of Eq. (5.7.22) can be derived for a
geometrically imperfect I-beam under a uniform moment, provided, first,
that the initial out-of-straightness and twist are given by Eqgs. (5.7.1) and
(5.7.2), respectively, and, second, that they are related by Eq. (5.7.7).

Figure 5.26 shows a plot of the load-deformation relationship of an
initially crooked beam. Unlike a geometrically perfect beam, in which
bifurcation of equilibrium takes place at the critical load, a geometrically
impetfect beam bends out-of-plane and twists as soon as the load is
applied. As the deformation increases, the load approaches the critical
load asymptotically if fully elastic behavior is assumed.

5.8 INELASTIC BEAMS

The solutions for the critical loads presented in the preceding sections are
valid only for the cases in which yielding of material does not take place
anywhere in the beam. In other words, a fully elastic behavior is assumed
for the beam. This assumption is reasonable for beams of high slender-
ness ratio (L/r,). However, for beams of intermediate slenderness ratios,
yielding will occur in some fibers of the beam before the attainment of
the critical load. Since portions of the beam are inelastic when buckling
commences, only the elastic portion of the cross section will remain
effective in providing resistance to lateral buckling. As a result, the
critical load will be reduced.

For simply supported [-beams subjected to equal and opposite end
moments, if there are no residual stresses the distribution of yielding
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FIGURE 5.26 Load-deformation relationship of a geometrically imperfect beam

across the section is symmetric about the horizontal principal axis and is
constant along the entire length of the beam. The inelastic critical
moment can be obtained from a simple modification of Eq. (5.4.34), as
done in reference 25:

i i (Ecw)c

Mo =+ V(EL)(GJ]), (1 +———) 5.8.1

where (EL)., (GJ)., and (EC,). are the effective bending rigidity,

torsional rigidity, and warping rigidity, respectively. Their values can be

estimated by using the tangent modulus concept discussed in Section
2.7.1.

A nondimensional plot of the critical moment M,,../M, where M, is the

yield moment versus the slenderness ratio L/r, is shown in Fig. 5.27 for a

typical stress-relieved, hot-rolled I-beam without residual stresses (curve
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FIGURE 5.27 Beam strength curves (equal and opposite moments)

a). In the inelastic range (M,./M,> 1), the variation of M,./M, with
L/r, is almost linear. Also shown in the figure is the M, /M, versus L/r,
plot for a typical hot-rolled I-beam with residual stresses (curve b). It can
be seen that the presence of residual stresses greatly reduces the lateral
torsional buckling strength of the beam in the inelastic range. Note that
the moment at which first yield occurs is significantly below M,. This is
because for such sections, compressive residual stresses as high as 0.3F,
where F, is the yield stress, may occur at the flange tips, thus yielding can
be initiated readily at the flange tips, and, as the applied moment
increases, yielding will spread to other parts of the cross section, further
reducing the resistance capacity of the beam to lateral buckling.

It should be mentioned that Eq. (5.8.1) is not applicable for beams
with residual stresses, since this equation is only valid for douhly
symmetric sections. If residual stresses are considered in the analysis, the
distribution of yielding across the section will net be symmetric about the
horizontal principal axis. The critical moment equation valid for
monosymmelric section must be derived and used to replace that of Eq.
(5.8.1). The discussion of lateral buckling of monosymmetric sections is
beyond the scope of this book. The discussions of this type of section can
be found in reference 26.
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To obtain the inelastic buckling loads for beams with a more general
loading case other than that of egual and opposite end moments,
recourse must be had to numerical methods.**”*® The reason for this is
that for beams under general loadings, the in-plane bending moment will
vary along the beam, and so the distribution of yielding will also vary
from cross section to cross section. Nethercot and Trahair®® have
presented numerical solutions for some hot-rolled I-beams with a number
of different loading arrangements. Some of the results are shown in Fig.
5.28, in which the nondimensional moment Mg/M, (M, = plastic moment
capacity of the section) is plotted as a function of the modified
slenderness VM,/M,,. Note that the most severe loading case is the one
with equal and opposite end moments that bends the beam in a single
curvature and the least severe case is the one with equal end moment that
bends the beam in a double curvature, For the former loading case,
yielding occurs along the entire length of the beam, whereas for the latter
loading case, yielding is usually confined to small portions at or near the
supports of the beam.

For very stocky beams, lateral instability usually will not occur. As a
result, the failure mode will be that of the formation of a collapse
mechanism when sufficient plastic hinges (locations where the moment
equals the plastic moment M, of the section) have formed. For hot-rolled
I-sections, the ratio of plastic moment to yield moment, i.e., M,/M,, is
approximately 1.12. The plastic moment capacity of a typical hot-rolled
I-section is shown as a dashed line in Fig. 5.27. Although, in reality, a
fully plastic beam can withstand a moment above M, because of the

FIGURE 5.28 Beam strength curves (unequal moments)
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strain hardening of the material, this strain-hardening effect is usually
neglected in design consideration.

5.9 DESIGN CURVES FOR STEEL BEAMS

It is quite evident from the preceding discussions that the lateral
instability behavior of real beams is complex. Some of the important
parameters are (1) the lateral unsupported length of the beam, (2) the
cross-sectional geometry, (3) the material behavior (elastic versus inelas-
tic), (4) the magnitude, type, and location of the applied loads, and (5)
the type of lateral supports, as well as the end conditions of the beam,
etc. Because of the complexity of this problem, certain simplifying
assumptions are inevitable in order to make use of the analytical results
for design purposes. In this section, we shall briefly discuss some aspects
of the design rules as specified by the AISC Specifications.*' Three
different design approaches, already familiar to the reader, will be
presented here: they are ASD, PD, and LRFD.

5.9.1 ALLOWABLE STRESS DESIGN

In ASD, a design is said to be satisfactory if the maximum stress
developed in the member falls below some specified value that is usually
obtained as a fraction of the yicld stress or ultimate stress.

Local Buckling

CoMPACT SECTION

For design purpose, it is customary to distinguish sections that are
compact from those that are noncompact. A compact section is one that
can develop the full plastic moment capacity M, and sustain a large hinge
rotation without local buckling. A section is considered to be compact if
the following conditions as contained in the AISC Specification are
satisfied:

1. The flanges are continuously connected to the web or webs,

2. The width-thickness ratio of unstiffened projecting elements of the
compression flange is less than or equal to 65/VF,, where F, is the
yield stress of the material in ksi. Thus, for an I-section, this can be
represented mathematically as

by _ 65

2 \/I‘Ty (5.9.1)
in which b; equals the width of the flange and f; equals the thickness of
the flange.

3. The width-thickness ratio of the stiffened elements of the compression
flange is less than or equal to 190/ \/I*Ty
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4. The depth-thickness ratio of the web or webs must satisfy the criterion
given by the following applicable equation. For f,/F, <0.16,

d 640 f.,)

S (1-3.742 5.9.2

. w?( 5 (5.9.2)

For f,/F,>0.16, d_257 5:93)
t. VF, o

In Egs. (5.9.2) and (5.9.3) [AISC Eqs. {1.5-4a) and (1.5-4b)],
d = the depth of the section

t,, = the thickness of the web

f, =the applied axial stress in the section (in ksi)

F, = the yield stress of the material (in ksi)

Sections that do not satisfy the requirements stated above are referred
to as noncompact sections. For noncompact sections, local buckling may
oceur before the attainment of M,.

Lateral Buckling

LATERAL UNBRACED LENGTH

In addition to the compactness of the section, the lateral unbraced length
of the member will also play a predominant role in determining the
strength of the beam. Thus, the applicable allowable bending stress in
beams as contained in the AISC Specification is determined by the
compactness of the section and the lateral unbraced length of the
member. Defining

b
760 (5.9.4a)
T
L.=smaller of 7(’]'000
Btk 5.9.4b
(d/AQF, ( )
20000C,
il 5.9.52
@IAF, (39:32)

L, =larger of

rﬂ/@c—b (5.9.5b)

y
where

by = width of flange (in inches)
d = depth of section (in inches)
A¢=area of compression flange (in square inches)
rr = radius of gyration of a section comprising the compression flange
plus 1/3 of the compression web area, taken about an axis in the
plane of the web (in inches)
F, = yield stress of the material (in ksi)
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The allowable bending stress K, for the member will be discussed as
follows:

ALLOWABLE STRESS K,
The allowable bending stress R, in the beam with lateral unbraced length

L, is as follows.

Compact Section with Ly < L. If the unbraced length L, is less than or
equal to L_, the beam is considered to be adequately braced, and so
lateral instability will not be a factor. For such cases, the full plastic
moment of the section can be developed. Thus, the allowable bending
stresses for doubly symmetric I-section (except hybrid girders and
members of A514 steel) bent about the strong axis are

R, = 0.66F, (5.9.6a)

and, for doubly symmetric I-section (except members of A514 steel) bent
about the weak axis,
K,=0.75F, (5.9.6b)

For strong axis bending, the value 0.06 corresponds to a safety factor
of 1:0.66 or 1.5 against yield. The use of 1.5 here as the safety factor
rather than the usual safety factor of 1.67 is attributed to the fact that for
compact section that is adequately braced, the full plastic moment of the
section can be developed. The ability to develop plastic moment means
that the section has a reserve strength over that of first yield (that is, the
yielding of the extreme fibers). This reserve strength is measured by the
ratio M,/M,, where M, is the full plastic moment and M, is the moment
at first yield (Fig. 5.29). For hot-rolled, wide-flange sections, the ratio
M,/ M, is about 1.12. Thus, if we divide the safety factor against first yield
of 1.67 by 1.12, we get a safety factor of 1.5 against full yield. For weak
axis bending, an even lower safety factor of 1/0.75 = 1.33 is used because
the reserve strength, that is, the ratio M,/M,, is about 1.5. For weak axis
bending, this value is much higher than that of the strong axis bending for
all hot-rolled, wide-flange shapes.

Semicompact Section with L, < L. Semicompact sections are sections
for which the web or webs satisfy the compactness requirement, namely
Eq. (5.9.2) or Eq. (5.9.3), but for which the flange has a b/2t; value
larger than 65/VF, but less than 95/\/F—;,. For such sections, the allowable
bending stresses are reduced from the allowable value of 0.66F, for strong
axis bending and 0.75F, for weak axis bending, respectively, as follows:
for strong axis bending:

E = F,,[O.79 - 0.002(%)\/1?,] (5.9.7a)

L
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FIGURE 5.29 Yield moment and plastic moment
for weak axis bending:
b
Fb=F,[1.075 —0.005(2—:)\/17,} (5.9.7b)
£

Note that Eq. (5.9.7a) and Eq. (5.9.7b) are merely straight lines
interpolating the allowable bending stresses between 0.66F, for compact
section and 0.60F, for noncompact section bent about the strong axis, and
between 0.75F, for compact section and 0.60F, for noncompact section
bent about the weak axis, respectively.

Noncompact Section with Ly<L..

R, =0.60F, (5.9.8)

Compact or Noncompact Section with L, < L =1L,

F,=0.60F, (5.9.9)

Note that in Eqgs. (5.9.8) and (5.9.9) the number 0.60 corresponds to the
usual safety factor of 1/0.60=1.67 used in ASD to bring the load to
service load range.
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Compact or Noncompact Section with L, > L, Bent About the Strong

Axis.
/102 OOOCb 1510 OOOCb

For

2 F(Lb/f'r) ]
- [3 ~ 30 x 10°G (5.9.10a)
E, =larger of 12.000C
Mf’ (5.9.10b)
but must not exceed 0.60F,, and for
510,000C,
Lb = rTJ_F
then
170,000G
"(L—/sz (5.9.11a)
F, = larger of 5 (;OOTC
L’T/A[h (5.9.11b)

but must not exceed 0.60F,. A schematic plot of F, as a function of L, is
shown in Fig. 5.30. In the abave equations, the units are kips and inches.

FIGURE 5.30 Schematic plot of K, versus L, in ASD
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,/Lc Lu . [510000Cy Lp
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~
Eqs.i5.9.4a) or {5.9.4b) Larger eof
[AISC/ASD-1.5.1.4.1{5}] Eqs. {5.9.5a) or {5,9.5b}
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Equations (5.9.10a) and (5.9.11a) are Egs. (1.5-6a) and (1.5-6b) in the
AISC Specification, respectively, and Eqgs. (5.9.10b} and (5.9.11b)
correspond to Eq. (1.5-1.7) in the AISC Specification. In these equa-
tions, G, is a parameter to account for the moment gradient in the
member as defined in Eq. (5.5.2) for unequal end moments. Although
values for C, for other load conditions are available (Table 5.2a), a
conservative value of unity is used for design purposes, when the bending
moment at any point within an unbraced length is larger than that at both
ends of the unbraced length. In such a case, the reduction in stiffness due
to the yielding material usually exceeds the benefits of the less severe
pattern of nonuniform moment distribution and the use of C,=1.0 is
therefore more appropriate. C, is also taken as unity for frames braced
apainst joint translation and for cantilever beams.

Equations (5.9.10a) and (5.9.11a) were developed by assuming that the
torsional resistance of the beam is negligible compared to warping
resistance. The former equation represents lateral buckling of the
compression beam flange in the inelastic range, while the latter equation
represents lateral buckling of the compression beam flange in the elastic
range. The unbraced length L, that marks the point of demarcation of
inelastic and elastic buckling is given by

510,000G,
Ly=rr R

¥

It is obtained by equating Eq. (5.9.10a) to Eq. (5.9.11a).
Equation (5.9.10b) was developed by assuming that the warping
resistance of the beam is negligible compared to the torsional resistance.

Basis oF AISC/ASD RuLEs

Equations (5.9.10a,b) and (5.9.11a,b) have their origin in Eq. (5.4.34).
Their development is briefly discussed as follows. By replacing L by L,
and expanding, Eq. (5.4.34) can be written as

ELGI [ 7ELE
M, = \/(” : )+ (” ! C") (5.9.12)
Lb Lb

The critical stress can be obtained by dividing Eq. (5.9.12) by S, (the
section modulus of the section about the strong axis).

JrZEI,,GJ) (n-“EIyEC,,)
= .9.13
=T )+ (Tsis (5.13)

The first term of Eq. (5.9.13) represents the torsional strength of the
section, whereas the second term represents the warping strength of the
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section, If we take
g=_E __E
2(1+v) 2.6
I,= Arﬁ, C, = th2/4
S . =2A4r3/d, h =0.95d

r.=0.41d, J=0.2841}

where

v = Poisson’s ratio (= 0.3 for steel)
ry, I, = radius of gyration about the x and y axis, respectively
d = overall depth of beam
t;=flange thickness
h = distance between centroids of flanges

and substitute it into Eq. (5.9.13), we can write

i) ) o9

For simplicity, one of the square terms in Eq. (5.9.14) can be
neglected. For example, if the section is a shallow, thick-flanged section,
the torsional strength will predominate. By retaining the first term (which
represents torsional strength) and disregarding the second term (which
represents warping strength), the critical stress is approximated by

_ 3E
Lbd/rytf

On the other hand, if the section is a deep section with relatively thin

flanges and web, the warping strength will predominate. By retaining the

second term and disregarding the first term, the critical stress is
approximated by

Fo. (5.9.15)

14E
ocr (Lb/ry)z (5‘9' 16)
Note that both Egs. (5.9.15) and (5.9.16) represent a quite conservative
estimate of the true critical stress. Consequently, for design purposes,
they can be used in place of the more complicated forin of Eq. (5.9.14).
To reduce the overconservatism, it is the larger value of these two
approximate equations that controls the design.

CONSIDERATION OF TORSIONAL STRENGTH ONLY
If only torsional strength is considered, the critical stress is approximated
by Eq. (5.9.15). By taking r,=0.22b; and using A¢= b, Eq. (5.9.15)
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can be written as

_ 0.66E -
cu:r'_L‘hd/‘A.f

(5.9.17)

To account for the moment gradient, the parameter G, is used; thus,

0.66EC,
Lod/A,

Finally, substitution of E = 29,000 ksi into Eq. (5.9.18) and dividing the
result by a safety factor of 1.67 gives

12,0004,
Lhd/Af

Equation (5.9.19) is Eq. (5.9.10b) and Eq. (5.9.11b) [AISC Eq. {1.5-7)].

CoNSIDERATION OF WARPING STRENGTH ONLY

If only warping strength is considered, the critical stress is approximated
by Eq. (5.9.16). However, it should be mentioned that in developing the
warping restraint strength of the flange, it is assumed that there is no
interaction between the flange and the web. Nevertheless, in reality, the
web that is attached to the flange will always provide some restraint to
the compression flange. To account for this effect, the AISC introduces a
parameter rr defined as “the radius of gyration of a section comprising
the compression flange plus one-third of the compression web area, taken
about an axis in the plane of the web.” Thus, by substituting rr=1.2r,
into Eq. (5.9.16), we have

‘F::r = CbF;u:r =

(5.9.18)

R= (in ksi) (5.9.19)

2
E
Frp=r =
(Lb/r'r)

Equation (5.9.20) has the same form as the Euler column-buckling stress
equation. Thus, the warping strength of the flange can be regarded as the
column-buckling strength of the compression flange. By introducing the
parameter , to account for the moment gradient, we can write Eq.
(5.9.20) as

(5.9.20)

JTZECh
(Lb/ F T)z

Taking E =29,000 ksi and dividing the result by a safety factor of 1.67,
we obtain .

‘Fcr = Cb‘F(‘:u:r = (5'9‘2]‘)

170,000C,
(Lb/F'T)2
Equation (5.9.22) is Eq. (5.9.11a) [AISC Eq. (1.5-6b)].

5= (5.9.22)



5.9 Design Curves for Steel Beams 363

Equation (5.9.22) is valid so long as all the fibers in the column
compression flange remain elastic. This, in turn, can be realized so long
as the unbraced length of the beam is large. If it is small, inelastic
buckling will occur and the SSRC (or CRC) parabola will again be used
to present this inelastic buckling strength:

- _i(&)z]
1«;,—[1 i) B (5.9.23)

Using the term G, to account for moment gradient and dividing the
equation by a safety factor of 1.50, we obtain

_ 2 ‘F;r(Lh/ ?‘T)z ]

B [3 1720 x 10°C, E (5-9-24)
The number 1720 x 10° in the second term is replaced by 1530 X 10° to
account for the fact that as Ly/r; gets larger, the reserved strength due to
plastification (progressive yielding from extreme fibers to fibers at the
neutral axis) may not be realized fully because of a possible occurrence of
local or lateral torsional instability before the attainment of the full
plastic moment M, of the section. Thus,

2 F(Ly/r)
N,
371530 x 10°G,

Equation (5.9.25) is Eq. (5.9.10a) [AISC Eq. (1.5-6a}].

In summary, Eq. (5.9.10b) or (5.9.11b) [AISC Eq. (1.5-7)] was
developed by considering the torsional strength of the section only.
Equations (5.9.10a) and (5.9.11a} [AISC Eqgs. (1.5-6a} and (1.5-6b)] were
developed by considering the warping strength of the section only Eq.
(5.9.10a) is applicable to inelastic buckling of the compression flange of
the beam and Eq. (5.9.11a} is applicable to elastic buckling of the
compression flange.

It should be noted that Eq. (5.9.10a,b) and Eq. (5.9.11a,b) are
applicable only to members bent about their strong axes. For members
bent about their weak axes, lateral torsional buckling will not occur. As a
result, only the compactness of the section is important in determining
the allowable bending stress. If the section is compact £,=0.75F; if the
section is noncompact, K, =0.60F; if the section is semicompact, Eq.
(5.9.7b} is used to interpolate the allowable bending stress.

E

¥

(5.9.25)

5.9.2 Plastic Design

Since the purpose of PD is to develop the maximum plastic strength of
the structure, local buckling or lateral torsional instability of members
must be prevented from occurring before the attainment of the plastic
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strength. To assure this, the AISC Specification provides the limits on the
width-to-thickness ratios of flanges and webs as well as the limits on the
lateral unbraced length of the beam.

Local Buckling

Limits FOR WIDTH-TO-THICKNESS RATIO FOR FLANGES

E,, ksi bl 2t
36 8.5
42 8.0
45 7.4
50 7.0
55 6.6
60 6.3
65 6.0

Livits FOR WIDTH-TO-THICKNESS RATIO FOR WEBS
For P/Py =0.27

d 412 P
=211 —) 9.
t,, \/F,,( 4P,, (5.9.26)
and for P/P,>0.27
d 257 5.9.27)
LV G2

where F, is in ksi. Equations (5.9.26) and (5.9.27) correspond to AISC
Equations (2.7-1a) and (2.7-1b), respectively.

Lateral Buckling

Limvuts For LATERAL UNBRACED LENGTH

For -0.5 <£< 1.0
My,

Ly _1375

Iy y

+25 (5.9.28)

M

For —-1.0<—=-0.5
MP
Ly 1375

£

(5.9.29)

Ty
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where

M/M, = the ratio of the end moments at the ends of the unbraced
segment, positive when the segment is bent in reverse
curvature and negative when bent in single curvature

r, = the radius of gyration of the member about its weak axis in
inches
F, = the yield stress of the material (in ksi)

Equations (5.9.28) and (5.9.29) are AISC Eqs. (2.9-1a) and (2.9-1b),
respectively. They are applicable for members bent about their strong
axis, but not applicable for members bent about their weak axis, nor are
they applicable in the region of the last plastic hinge formation in the
development of a failure mechanism. This is because for members bent
about their weak axis, lateral instability is not a factor, and so the length
limitation should not be applied. For the region of last hinge formation,
ductility (large rotation capacity) of the hinge is not required. Therefore,
in this region, and in the regions not adjacent te a plastic hinge, the
maximum unbraced length and allowable stress are determined from the
elastic equations (5.9.10a,b) and (5.9.11a,b) instead.

Strength Reduction

If the unbraced length of the member exceeds the limits set forth in Eqs.
(5.9.28) or (5.9.29), a reduced ultimate bending strength of a member
subjected to moment alone is given in the AISC Specification as

(Lb/ry)\/f:_;f

Mo = [1'07 T 3160

]Mps_Mp (5.9.30)

in which F, is in ksi and M, is the plastic moment capacity of the cross
section in inch-kips. Equation (5.9.30) [AISC Eq. (2.4-4)] was de-
veloped based on a semiempirical approach. It is plotted in Fig. 5.31 as a
solid line. The dashed-dotted line in the figure represents a more exact
analysis by Galambos,?’ considering the effect of residual stress. It can be
seen that Eq. (5.9.30) gives a reasonably good approximation to the more
exact analysis.

5.9.3 Load and Resistance Factor Design

LRFD is based on the concept of limit states. For a beam, there are three
possible types of failure limits: (1) plastic yielding, (2) lateral instability,
and (3) local buckling. In the following, we shall limit our attention to the
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FIGURE 5.31 Comparison of Eq. (5.9.30) with numerical results of Galambos

first two failure modes or limits, namely, yielding and lateral instability.
The subject of local buckling is treated elsewhere.?

To avoid local buckling, one must use compact sections. The limita-
tions for the width-to-thickness ratios for sections that can be regarded as
compact under the AISC/LRFD Specification™ are the following:

Flange:
by 65
— € — 5.9.31
2, \/E ( )
Web:
h, 640
—=— 59.32
n = VE, 23
where
b; = width of flange
fy = thickness of flange
#1. = depth of web clear of fillets
t,. = thickness of web
F, =yield stress of the material in ksi
Defining
300r,
L=k (5.9.33)

P \/Fy



5.9 Design Curves for Steel Beams 367

X
L=—"2 V1 +VI+ X% - DY) (5.9.34)
(F,—£)
Ly, = unbraced length of the member (5.9.35)

where

r, =radius of pyration about the weak axis in inches

F, = yield stress in ksi
x [(EAGJ
X == |/ 9.
=y 7 (5.9.36)

_AG (i)z

2L \GT

(5.9.37)

S, = section modulus about strong axis (in in.”)

E = elastic modulus (in ksi)

G = shear modulus (in ksi)

A = cross section area (in in.%)

J = torsional constant, (in in.*)
C,, = warping constant (in in.?)

I, = moment of inertia about weak axis (in in.*)

F. = compressive residual stress in flange; taken as 10ksi for rolled

shapes and 16.5 ksi for welded shapes

If L,=L,, the beam is considered to have adequate lateral support. If
L,<Ly=L,, the beam is considered to be laterally unsupported and
inelastic lateral buckling may occur. If L, > L., the beam Is considered to
be laterally unsupported and elastic lateral buckling may occur. The
nominal moment M,, specified in the AISC/LRFD Specification® and
developed on the basis of a study reported in reference 32 for doubly
symmetric I-sections for various ranges of Ly, is summarized as follows,
and illustrated in Fig. 5.32.

Compacr SECTION wiTH L), < L,
M, =M, (5.9.38)
for section bent about strong and weak axes. 7
Comract SecTioN wiTH L, << Ly, = L, BENT ABOUT STRONG AXIS
M, = Cb[Mp - (M, — M,)(%)] =M, (5.9.39)

where G, =Eq. (5.3.2) with M; =M, and M, = Mp. It is taken as unity
for unbraced cantilevers and for members where the moment within a
significant portion of the unbraced segment is greater than or equal to the
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Flastic Inelastic Elastic

Eq.{5.9,39)
_—"[AISC/LRFD Eq. (F1-3)]
Eq.(5.9.381

Eq.(5.9.41}
‘[AISC/LRFD Eq. F1-13)]

Nominal Flaxural Strength, My

Lateral Unbraced Length, Ly

FIGURE 5.32 Schematic plot of M, versus L, in LRFD

larger of the segment end moments and

M. =S(F,-F) (5.9.40)
in which

S, = section modulus about the strong axis in in.?
F, =yield stress in ksi

Equation (5.9.40) can be written in the form M, = M, — ES,. Here, as in
ASD, a smaller value of moment than M, is used as the transition
moment M, from inelastic to elastic behavior to account for the presence
of residual stress in the section. In LRFD, the maximum compressive
residual stress in rolled shapes is assumed to be F, =10 ksi and in welded
shapes, it is 16.5ks1, as given in Eq. (5.9.40). As a result, the moment
F.S, is subtracted from M,

Equation (5.9.39) represents a straight line interpolation from M, = M,
for L,=L, to M,=M, for L,=L,. The term C, can be introduced to
convert the case of unequal end moments with |M;| < |M,| =M, to the
case of equal end moments with M, = G, M.

COMPACT SECTION WITH Ly, > L BENT ABOUT STRONG AXIS

T

M, = CM,.=C
b T,

Z
\/ (EI,GJ + %’ Ef,,Ecw) <GM, (5.9.41)
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Note that Eq. (5.9.41) is identical to the exact elastic buckling solution
given by Eq. (5.5.1). In other words, the theoretical lateral torsional
buckling moment of an elastic beam under equal end moments is used

directly in LRFD.
Equations (5.9.39), (5.9.34), and (5.9.41) are contained in the AISC/

FIGURE 5.33 Comparison of beam curves for ASD, PD, and LRFD
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LRFD Specification™ as Eqs. (F1-3), (F1-6), and (F1-13), respectively.
Figure 5.32 shows schematically the variation of the nominal moment
capacity M, with the unbraced length L. The LRFD beam curve is
generally more liberal and much simpler than that of the ASD beam
curve.

The equations given above are applicable only to compact nonhybrid
I-sections in which yielding or lateral torsional instability is the limit
state. The applicable expressions for other sections, including symmetric
box sections, solid rectangular bars, hybrid sections, and tee and
double-angle sections, are given elsewhere.

Figure 5.33a,b shows a comparison of the variation of the nondimen-
sionalized nominal moment capacity M,/M, as a function of the
slenderness ratio L,/r, of a beam using the three design approaches
(ASD, PD, and LRFD) discussed in the preceding sections. The beam is
a W18 X 76 section with a yield stress F,=30ksi and a compressive
residual stress in the flange K = 10 ksi. The Young's modulus E is taken
as 29,000 ksi and the shear modulus ¢ is taken as 0.385E. Figure 5.33a
corresponds to the case in which M,/My = —1 (that is, G, = 1.0) and Fig.
5.33b corresponds to the case in which M,/My=1 (that is, C,=2.3).
Note that the nominal moment capacity of the beam is larger for
double-curvature bending than for the single-curvature bending.

5.10 OTHER DESIGN APPROACHES

Certainly, by now we see that designing for lateral torsional buckling is a
complex and challenging problem. This is because the resistance of the
beam against lateral torsional buckling is dependent on many factors,
such as the geometry and end conditions of the beam, the amount and
nature of bracing, the type and manner of the loadings, etc. Neverthe-
less, there are two undebatable facts. A beam with a low slenderness
ratio should be able to develop its full plastic moment M,, and a beam
with a large slenderness ratio should behave in a fully elastic manner, so
that the elastic critical moment M., should represent the nominal moment
capacity of the beam. The main problem is that the behavior of a beam
with intermediate slenderness ratios is neither fully plastic nor fully
elastic, and so neither the plastic moment M, nor the elastic critical
moment M, can be used to represent the nominal moment capacity M, of
the beam. The nominal moment capacity for a beam with an intermediate
slenderness ratio should fall between M, and M, and its value should
provide a smooth transition from M, to M. For most specifications, the
choice of this transition moment is rather empirical. For example, in the
ASD method, a parabola [Eq. (5.9.25)] is used to represent this
transition range; and in the LRFD method, a straight line [Eq. (5.9.39)]
is used for this transition range. In the discussion that follows, we will
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present two other empirical methods to represent beam strength in the
transition range.

5.10.1 Structural Stability Research Council Approach

In the Structural Stability Research Council (SSRC) approach, it is
assumed that the stability behavior of beams is analogous to the stability
behavior of columns, and so the lateral-torsional buckling strength of a
beam is represented by the SSRC multiple-column curves. Using the
Rondal-Maquoi form [Eq. (2.11.17)] with P/P, replaced by M,/M,, and
Ac replaced by Ay, where A, = VM,/M,,, we have

M, (1+ 7 +A8) = VI(1+ 5 + A)* — 4A]
M, 272

p

(5.10.1)

where 7 is defined the same as for columns in Eq. (2.11.18).

5.10.2 European Committee on Constructional Steelwork Approach

In the European Convention of Constructional Steelworks (ECCS)
approach, the nominal moment capacity for the transition range is

represented by
Mn 1 1/n
M, (1 + Aﬁ“) (5.10.2)

P

where n is a coefficient that varies from 2.5 to 1.5, depending on the

criterin set by the various national code-writing bodies in Western

Europe and A, is the beam slenderness parameter defined as A, =
Mp/Ml:r'

Example 5.3

Calculate the nominal moment capacity of a W16 x 36 section bent about

its strong axis using the following:

1. AISC/ASD approach
2. AISC/LRFD approach
3. SSRC approach

4. ECCS approach

The beam is simply supported and subjected to a uniform moment. Use
E=29,000ksi, G/E =0.385, F,=36ksi, L,,=150in., £ = 10ksi.

soLUTION: W16 X 36 section properties: 4 =10.6in.?, 4,=3in.%, d=
15.86in., b;=6.985in., rr=1.7%in., S5, =56.5in.%, [,=24.5in.", r,=
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1.52in., J=0.545in.*, Z,=64.0in.?, C, = 1450in.°
C,=1.0 ({constant moment)
M, = Z F,=2304in-kips

w2

Mcr = CbMocr = Mu = i '\/[E‘I}' G‘I + (LZ
b

cr — Lb
= 2765 in-Kkips

)EIYEC“.]

1. AISC/ASD:

L. =smaller of
20,000

(d/AQF,
= 88.5in.

=105 in.

20,000,
(d/AQF,

2,000
s 5o
¥

=1051n.

102,000G, )
rﬂ/T"= 95.3 in.
/510,000C, ,
T Tb= 213in.
<L,
¥y

.
. [102,000C, -, /510,000G,
T F, T E

¥
therefore use Eq. (5.9.10), that is,

=105 in,
L, =larger of

Since L > L, and

2 F(Ly/r) } )

c__ S\l o

[3 1530 x 10°G, |1y = 18-05 ks
E,=larger of

12.000C: _ 151 ksi

L(d/A)

= 18.05 ksi
and M, = S, K, = 1020 in-kips

Beams
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2. AISC/LRFD

300r
L,="-==76in
’VE

L,:F—’*’f—‘F\/E\/[l + X(F, - B

b4

=2191n.

Since L, < Ly, < L,, therefore, by using Eq. (5.9.39) with M, = S(F, - F),
we get

M, = q{ — (M, — Adm L\]

L.—L,J
=1872 in-kips
3. SSRC
M 7304
Ay = B — =0.91
b M., 2765 3

Using SSRC curve 2, that is, where o =0.293 in Eq. (2.11.18) for n, we
have, from Eq. (5.10.1),
(1+n+A3) - VKL+q+AY—4A]

242

M_

= 1177 in-kips

M,
Ay= Mp =0.913

cr

4. ECCS

Using n = 2.5 in Eq. (5.10.2) gives

1 1/n
()
1+AF i

= 1893 in-kips

5.11 SUMMARY

If an I-beam is loaded in the plane of its weak axis and is not adequately
braced laterally, the beam will bend out-of-plane and twist when the load
has reached a critical value. This phenomenon is known as the lateral

torsional buckling. For a geometrically perfect beam, lateral torsional -
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instability is a typical bifurcation problem. We can use the concept of
neutral equilibrium to obtain the critical load. In this approach, a slightly
deformed state of the beam corresponding to its buckled position is first
drawn and equilibrium equations are then written with respect to this
deformed configuration. The eigenvalue solution to the characteristic
equation of the resulting equilibrium equation gives the critical load of
the beam. Depending on the type and nature of the loading condition,
the resulting linear differential equations may have constant or variable
coefficients. For the later case, it is often necessary to resort to numerical
techniques to obtain solutions.

The critical loads for beams subjected to loads that induce moment
gradients can be obtained approximately by introducing the parameter
G, as in Eq. (5.5.1). This parameter was developed on the basis of
equivalent moment concept. Thus, the product C, M, in Eq. (5.5.1)
represents the magnitude of a pair of equal and opposite end moments
that would cause lateral instability in the beam, the same as real loadings
which would also cause such instability. The value of G, is always greater
than unity, which indicates that the most severe loading case is the one in
which the member is subjected to a pair of equal and opposite end
moment. In view of this, it is the usual practice in design to let G, equal
unity for members where the moment within a significant portion of the
unbraced segment is greater than or equal to the larger of the segment
end moments. This situation usually arises for unbraced cantilevers and
for members in unbraced frames for which single curvature bending
occurs.

In addition to the effect of moment gradient, the support conditions of
the beam also play an important role in affecting its lateral instability
behavior. These effects can be accounted for by the use of the G, factor,
as shown in Eq. (5.6.7). Alternatively, one can use the effective length
factor K, expressed in Eq. (5.6.10). However, because of its complexity
in application, and because of the sometimes questionable support conditions
for the real beams, the effective length concept is not currently used in
design. For design purpose, the actual unbraced length (that 1s, K=1) is
usually used.

An alternative approach recommended in the third edition of the
SSRC Guide™ to account for the effects of moment gradient and support
conditions is also presented in this chapter. The applicable equations are
given in Egs. (5.6.16) and (5.6.17).

If the beam is not geometrically perfect, out-of-plane deformation and
twist will occur as soon as the load is applied, making the problem a
load-deflection, rather than an eigenvalue problem. For a perfectly elastic
behavior, an amplification factor analogous to that of an imperfect
column can be developed. By using this amplification factor, the total
rotational and translational deformations of the imperfect beam can
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easily be obtained as a function of the corresponding initial deformations
[Eqgs. (5.7.20) and (5.7.21)].

The assumption of a perfectly elastic behavior is justified only if the
slenderness ratio of the beam is large. If this is not the case, material
yielding will occur before buckling, with the result that only the elastic
care of the cross section is effective in resisting the buckling deformation.
The study of the inelastic buckling behavior of I-beams is beyond the
scope of this book; it is given in detail in reference 24. Nevertheless, the
readers should realize that material yielding has a detrimental effect on
the buckling strength of the beam. Consequently, the buckling load of an
inelastic beam usually falls significantly below the elastic buckling load.
For design purposes, the inelastic buckling strength of beams with
intermediate slenderness ratio is represented, therefore, by a simple
curve-fitting technique. For example, the ASD uses the parabola
approximation [Eq. (5.9.10a)], whereas the PD and LRFD uses a straight
line approximation [Eqs. (5.9.30) and (5.9.39), respectively].

For beams with low slenderness ratio, or in cases ‘where bending is
about the weak axis, lateral instability is not a factor. For such cases, the
full plastic moment M, of the beam can be developed and so the limit
state is yielding. The point of demarcation between failure by full yielding
of the cross section and inelastic buckling for beams bent about their
strong axes is given by the length L. expressed in Eq. (5.9.4a,b) for
ASD, the conditions expressed in Egs. (5.9.28) and (5.9.29) for PD and
L, expressed in Eq. (5.9.33) for LRFD.

For beams with large slenderness ratio, the limit state is elastic
buckling. Consequently, the elastic bifurcation solution [Eq. (5.4.34)] can
be used to represent the beam strenpgth. For example, the ASD uses a
conservative approach by ignoring either the torsional stiffness or the
warping stiffness contribution of Eq. (5.4.34) to develop Egs. (5.9.11a)
and Eq. (5.9.11b), respectively, to represent the beam strength in the
elastic range. The LRFD on the other hand, adopts the exact equation
(5.4.34) to represent the elastic beam strength.

PROBLEMS

5.1 Derive the differential equation governing the lateral torsional buckling
behavior of a simply supported I-beam subjected to unequal end moments
as shown in Fig. P5.1.

"- o
LA Fr
FIGURE P5.1

5.2 Derive the differential equation governing the lateral torsional buckling
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behavior of a tip-Joaded cantilever beam of rectangular cross section if the
load is applied at the following:

a. at the centroid of the cross section
b. at the top of the cross section
c. at the bottom of the cross section

5.3 Plot the critical moment M, as a function of the length L for a rectangular
beam subjected to a pair of equal and opposite end moments (Fig. P5.3a)

FIGURE P5.3 "
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5.4

5.5

5.6

5.7

5.8

5.9

with the cross seetions shown in Fig. P5.3b if
t=1in. (25.4mm)
E=129,000ksi (2x10° MN/m?
G=12,000ksi (8.3 x 10° MN/m?)
J=Clbe

where C is a correction factor that is a function of &/t as shown in Fig.
P5.3c.
What observations can you make?

Show that Eq. (5.5.22) can be used to approximate the values for C, given
in the fourth column of Table 5.2a (Page 334),

Plot the beam curves for a simply supported W8 X 31 section using

a. LRFD approach
b. SSRC approach
c. ECCS approach

Use M,/M, as the ordinate and A, = VM_/M., as the abscissa.
The material properties are:

E = 129,000 ksi, G/E =0.385, F, =36 ksi

Using C, = 1.0 (single-curvature bending) and C,=2.3 {double-curvature
bending).

Compare the three design methods (ASD, PD, and LRFD) by plotting the
nondimensional (M,,/M,) —{L/r,} curves for a W24 % 55 beam. Plot points
of the unbraced length limits for the elastic, inelastic, yield, and plastic
ranges. Use E =29,000ksi, G/E =0.385, F,=43.5ksi, and F, = 12.6 ksi.

@iy M, /M,= -1, C,=1.0
{iiy M/M,=-0.5, G.=13
Find the maximum end moment capacity of a simply supported beam with
W24 x 55 section, where
L,=150in., G,=1.0, F =36ksi, F=10ksi, £=29,000ksi,
G/E=0.385 [ =29.1in* §,=114in",
Z,=134in°, r,=134in, J=118in", C,=3870in.5
using the LRFD method.

Explain why the actual value of C, factor in LRFD specification is limited to
(., = 1.0 when the maximum moment occurs between the ends.

A 12ft. long steel cantilever has the cross section shown in Prob. P5.10.
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Determine the elastic buckling value of the concentrated load P that acts at
the free end of the top flange using the relevant solution curves given in this
chapter.

5.10 A simply supported steel I-beam whose properties are given below has a
central concentrated load applied in such a way that lateral deflection and
twist are prevented at midspan (i, = ¥y, =0). If the beam span is 35 ft, then

a. determine the elastic buckling load M,,
b. determine the nominal moment capacity M, specified in the LRFD
Specification

where

A=1835in2, L=1330in", r,=854in., §,=126.4in.°, Z,=144.1in.",
I,=5375n.", r,=177in., r=193in., C,=3968in.°, J=197in7,
E=130,000ksi, G =12,000ksi, F,=45ksi

(see Fig. P5.10).

| - 04" 20.89"

FIGURE P5.10

5.11 Derive the differential equation governing the lateral torsional buckling
behavior of a simply supported I-beam subjected to a uniformly distributed
load as shown in Fig. P5.11.

Lz i Lrz2

T 3

FIGURE P5.11
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Chapter 6

ENERGY AND .
NUMERICAL METHODS

6.1 INTRODUCTION

In the preceding chapters, the critical loads of columns (Chaper 2) and
beams (Chapter 5) have been determined by the eigenvalue (or bifurca-
tion) approach. In an cigenvalue analysis, the members are assumed to
be geometrically perfect. As a result of this assumption, the lateral
deflections of a centrally loaded column or a beam subjected to in-plane
forces will not occur until the applied load reaches a critical value. At this
critical load, a small disturbance on the member will produce a large
lateral deflection.

To obtain the critical load, we used the method of neutral equilibrium
in which a linear differential equation is first written down for the
member in a slightly deformed state. The solution to the characteristic
equation derived from this governing differential equation then gives the
critical load of the member.

To account for the inelasticity in the eigenvalue analysis, the concept of
effective modulus (tangent modulus and reduced modulus) was used:
here, the elastic modulus is simply replaced by an effective modulus.
Since the effect of inelasticity is to reduce the stiffness of the member, the
plastic buckling load in an inelastic analysis is always smaller than that of
the elastic buckling load.

As we said, eigenvalue analysis assumes that a member is geometrically
perfect. If the member is geometrically imperfect, lateral deflection will
begin as soon as the load is applied. As a result, the method of neutral
equilibrium, which is for determining the critical load for a perfect
member, cannot be applied for the case of an imperfect member.
Instead, a more complex analysis, known as the load-deflection (or

381



382 Energy and Numerical Methods

stability) approach, must be used. In this approach, the complete
load-deflection response of the member is traced from the start of loading
. up to the critical load. Such an analysis for the relatively simple case of
elastic frameworks has been described in Section 4.5, Chapter 4.
Rigorous load-deflection analysis for inelastic, imperfect members is
rather complicated. As a consequence, recourse must be had to numeri-
cal means. We shal] discuss two such numerical methods in the later part
of this chapter.

In this chapter, we will present two approximate methods of stability
analyses. They are the energy method and the numerical method. In the
energy method, an approximate value for the critical load is determined
by examining the variation and balance of energies before and after
buckling in a structural system. It is valid only for structural systems that
are elastic and conservative. For an inelastic system, recourse must be
had to numerical methods to obtain solutions. We will present two such
methods in this chapter. They are the Newmark method and the
numerical integration method. Since iterations are involved in these
methods, it is most convenient and efficient to implement the solution
procedures in a computer.

6.2 PRINCIPLE OF VIRTUAL WORK

In this section, we will explain the principle of virtual work as a precursor
to the discussion of the energy method.

In applying the principle of virtual work to structural analysis, we first
apply a virtual displacement to a structural system and then write down
the corresponding work done by the systern on this virtual (or imaginary)
displacement. The work done by the forces in the system on the virtual
displacement is called wvirtual work. The principle of virtual work states
that a system is in its equilibrium state if the virtual work done by all the
forces acting on it is zero for every virtual displacement.

The validity of this principle can be shown easily by considering a
particle in a system subjected to forces F, F, ..., F, as shown in Fig.
6.1. If we denote £ as the resultant of the forces acting on this particle,
the virutal work done by the resultant force F; acting through the virtual
displacement dr is

6W = Fdry (6.2.1)
where 6rg is the component of virtual displacement in the direction of f.
However, if the system of forces £, 5, ..., F, is in equilibrium, their

resultant force Fr must be zero. Consequently, the work done by the
resultant force is also zero. Hence, if the system of forces acting on the
particle is in equilibrium, Eq. (6.2.1) vanishes

SW = Fybry =0 (6.2.2)
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FIGURE 6.1 Particle subjected
to a system of forces

Equation (6.2.2) is the mathematical statement of the principle of
virtual work. It is important to observe that the virtual displacement &rg
need not be infinitesimal; it can be finite so long as the system of forces
remains constant in magnitude and direction during the virtual displace-
ment. Thus, the principle of virtual work is applicable regardless of
whether the virtual displacements are small or finite. Furthermore, it
should be noted that the virtual displacement is purely imaginary. It does
not need to bear any relationship to the actual displacement experienced
by the system under the action of the applied forces. The only
requirement is that these virtual displacements are kinematically
admissible, that is, they are conformable with the kinematic constraints
of the structural system.

The requirement that the virtual displacements be kinematically
admissible is introduced as a matter of convenience rather than as an
absolute necessity. By using virtual displacements that are kinematically
admissible, the number of arbitrary displacements, which are needed in
establishing the equilibrium condition of the system, is greatly reduced.’
For example, consider a rigid mass confined in a frictionless tube acted
on by two forces F; and F (Fig. 6.2a). We shall use the principle of
virtual work to determine whether the mass is in equilibrium under the
applied forces. Let us introduce an arbitrary displacement to the mass. If
we ignore the geometric constraints and introduce an arbitrary displace-
ment &dx to the mass in the x-direction (Fig. 6.2b) (the symbol & denotes
a variation), the virtual work done by the mass is

8W =R, 5x (6.2.3)

in which R, is the x-component reaction force acting on the mass by the
tube.
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FIGURE 6.2 Rigid mass in a frictionless tube

Similarly, if we introduce an arbitrary displacement 8z to the mass in
the z-direction (Fig. 6.2¢c), the virtual work done by the mass is

SW =R,6, {6.2.4)

in which R, is the z-component reaction force acting on the mass by the
tube.

Now, if we introduce an arbitrary displacement &y to the mass in the
y-direction (Fig. 6.2d), the virtual work done by the mass is

5W = E,dy — 8y (6.2.5)

The minus sign appearing in the second term is due to the fact that the
direction of F, and 8y are opposite to each other.

If the mass is in equilibrium, then the virtual work done by the forces
upon any arbitrary displacement must be zero. In other words, if the
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mass is in equilibrium, then Eq. (6.2.3) to Eq. (6.2.5) must vanish.

W =R,6x=0 (6.2.6)
6W=R,0z2=0 (6.2.7)
oW = Fdy— Edy =0 (6.2.8)

Since none of the arbitrary displacements (dx, 6z, dy) are zero, from
Eq. (6.2.6) we must have R,=0 and from Eq. (6.2.7), R, =0. Finally,
from Eq. (6.2.8), we must have F,=F. However, the fact that
Ry=R,=0 is quite obvious by inspection of Fig. 6.2a. Therefore, the
only useful information we can obtain concerning the equilibrium
conditions of the rigid mass is from Eq. (6.2.8), which states that if the
mass is in equilibrium, the applied forces £, and K must be equal in
magnitude, opposite in direction and applied on the same straight line.
Note that since Eq. (6.2.8) was obtained by introducing an arbitrary
displacement Jy that does not violate the condition of peometric
constraints of the mass, it follows that we need only consider the
kinematically admissible displacement (i.e., virtual displacement) in
order to establish the equilibrium condition of the mass.

In the light of this example, we can conclude that a necessary and
sufficient condition for the mass in equilibrium is when

SW = (F,— F) 8y =F,8y =0 (6.2.9)

In Eq. (6.2.9), F,=(F, — E) is the resultant of the applied forces in the
y-direction and &y is the virtual displacement in the y-direction. Note
that the values of the forces used in calculating the virtual work are fixed
at their full value during the virtual displacement. This is because the
virtual displacement is purely imaginary. Since the displacement is not
real, a change in values of the forces, which may occur during a real
displacement of the system, will not occur for a virtual displacement.

Another important point is that if we use only arbitrary displacements
that do not violate the kinematic constraints of the system, we nced to
consider only the work done by the applied forces in establishing the
equilibrium condition of the system. This is because the reactions that are
associated with rigid constraints will do no work and hence need not be
considered in calculating the virtual work of the system.

The rigid mass example discussed above has only one degree of
freedom because it is confined to move only vertically. As a result, the
only virtual displacement that is kinematically permissible is dy.

For a rigid system that has n degrees of freedom, Eq. (6.2.9) becomes

OW =2 FEég;,=0 (6.2.10)
i=1
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in which g, are the generalized displacements of the system and dq; are
independent variations of the generalized displacements. E are the
generalized forces acting in the direction of ¢;. The word generalized is
used here to emphasize that the displacements can be either translational
or rotational and that the forces can be concentrated forces or moments.
If the forces are distributed, Eq. (6.2.10) still applies, provided that the
summation sign is replaced by an integral sign.

For systems that are not rigid, deformation will occur when forces are
applied to the systems. As a result, in addition to doing external work,
the systems will do internal work when virtual displacements are
introduced. Thus, the virtual work equation for the system that is not
rigid, viz. a deformable system, takes the form

W =86W,, + oW, =0 ' (6.2.11)
where
OW,,, = external virtual work
OW,,, = internal virtual work

Equation (6.2.11) states that a deformable system is in equilibrium if
the total virtual work done by the external forces and the virtual work
done by the internal forces equals zero for any virtual displacement.

FIGURE 6.3 Deformation system
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To show the validity of Eq. (6.2.11), let us consider a system that
consists of a particle attached to three springs (Fig. 6.3a) subjected to a
system of external forces Fy a0, Faexts - - + 5 Fnexe. Under the action of this
set of external forces, the particle will displace. This displacement will
induce internal forces F,y,, Faim, F3im in the springs (Fig. 6.3b).
Denoting Fp .. and Fgi, as the resultants of the set of external forces
and the set of internal forces, respectively, and Fy as the resultant of all
the forces (external and internal) acting on the particle (Fig. 6.3c), if a
virtual displacement dry is introduced to the particle in its equilibrium
position in the direction of Fr (Fig. 6.3d), the total virtual work done on
the particle will be

SW =W, + Wy,
= FchlarR_ FRinlarR

= Fybrm (6.2.12)

where Fg = Frex — Frim-

If the system of external and internal forces acting on the particle is in
equilibrium, Fg is zero. As a result, Eq. (6.2.12) vanishes and thus
verifies Eq. (6.2.11).

As an example to demonstrate the use of Eq. (6.2.11), consider a
spring-mass assemblage (Fig. 6.4a). Because of the weight of the mass,
the spring will stretch by an amount A. As a result of the elongation, an
internal force will develop in the spring. Let us denote this internal spring
force by F,nng- The external force acting on the system is the weight of
the mass W ... If the system is in equilibrium, then both the spring and
the mass must be in equilibrium. In Fig. 6.4b a free body of the mass is
shown. It is obvious from the diagram that if the mass is to be in
equilibrium, the spring force F,,;,, must be balanced by the weight of the

FIGURE 6.4 Spring-mass system
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mass W ... In other words, we must have
Fspring = Wmass (6.2.13)

Now, let us establish this equilibrium condition using the principle of
virtual wark. Suppose we introduce a virtual displacement 8y from the
equilibrivm position of the system (Fig. 6.4c). The virtual work done by
the external force on the mass is

OWeyt = Winass Oy (6.2.14)
and the virtual work done by the internal force on the mass is
6“’inl = _Fspringay (6215)

The internal virtual work is negative because the direction of internal
force F,ping is Opposite to that of the virtual displacement dy.
Using Eq. (6.2.11), we have

OWer + Wi = W8y — Fsprillgay
= (Wmnss - Fspring)ay =0 (62 16)

Since dy is arbitrary and so not necessarily equal to zero, the only way
that Eq. (6.2.16) can be satisfied is when

Wmnss - Fspring =0 (6‘2.17)
or
W s = Fspring (6218)

Equation (6.2.18) expresses the equilibrium condition of the system.
Note that the same equilibrium condition can be established by using the
conventional free-body approach [Eq. (6.2.13)]. In fact, for this simple
example, it is much easier and more direct to use the free-body approach
than the virtual work equation to establish the equilibrium condition of
the system. However, for more complicated systems the virtual work
equation works better.

If we restrict ourselves to elastic systems subjected to conservative
forces, an important principle in mechanics known as the principle of
stationary total potential energy can be developed from the virtual work
principle. This is described in what follows.

6.3 PRINCIPLE OF STATIONARY TOTAL POTENTIAL ENERGY

When external forces are applied to an assemblage of deformable bodies
in a structural system, the system will deform. If the system returns to its
original configuration when the applied forces are graduaily removed, the
system is said to exhibit elastic behavior. An elastic system can be linear
or nonlinear. For a linear elastic system, the stress and strain relationship
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FIGURE 6.5 Linear and non-
(b) Nenlinear Elastic System linear elastic system

of the material is related linearly (Fig. 6.5a). For a nonlinear elastic
system, the stress and strain relationship is related by some nonlinear
functions (Fig. 6.5b). In either case, loading and unleading will follow the
same path as indicated in Fig., 6.5. In other words, for elastic systemns,
there is a unique one-to-one relationship between stress and strain.

For an elastic system, the work done by the external forces on the
system is stored as strain energy in the system. Thus, if a virtual
displacement is introduced to the system, the external virtual work done
by the external forces on the system S8W,, is stored as virtual strain
energy U in the system

oW, = 6U (6.3.1)
From the principle of virtual work [Eq. (6.2.11}], we can write
EWee = —6Wiy (632)

By comparing Eqs. {6.3.1) and (6.3.2), the variation of internal virtual
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work can be related to the variation of virtual strain energy in the system
by Wi, = —8U (6.3.3)

If the external forces acting on the system are conservative (that is, if
the work done by these forces is path independent and fully recoverable
in a loading/unloading cycle), the increase in the external work done on
the system will correspond to a decrease in the potential energy of the
system. As a result, we can also write

W = —8V (6.3.4)

where V is the potential energy of the system,
Upon substituting Eqs. (6.3.3) and (6.3.4) into Eq. (6.2.11), we obtain

—8V —8U=0 (6.3.5)
or
S(U+V)=0 (6.3.6)

The sum of the strain energy and potential energy of the system is the
total potential energy of the system. Using the symbol IT to denote the
total potential energy of a system, Eq. (6.3.6) can be written as

SIT=0 (6.3.7)

Equation (6.3.7) is the mathematical statement of the principle of
stationary total potential energy. In words, this principle states that if an
elastic system acted on by conservative forces is in equilibrium, the total
potential energy of the system must be stationary.

A stationary value may correspond to a minimum or maximum value
of the total potential energy function. A minimum value indicates that
the equilibrium is stable and a maximum value indicates that the
equilibrium is unstable. To investigate whether a system is in a stable or
unstable equilibrium condition, while at the same time ensuring that the
first variation of the total potential energy vanishes (that is, 611 =0}, one
must also evaluate the second variation of the total potential energy
(6°I0) of the system. If 6°[1>0, the system is in a stable equilibrium
condition, and if &°TI<0, the system is in an unstable equilibrium
condition.

For a continuous system (that is, a system with an infinite number of
degrees of freedom), the use of the principle of stationary total potential
energy to establish the equilibrium conditions of the system requires us to
resort to a special branch of calculus known as the calculus of variations.
This is described in the following section, where we shall attempt to use
the principle of stationary total potential energy together with the
calculus of variation to establish the equilibrium conditions describing the
in-plane buckling behavior of a hinged-hinged column and the lateral
buckling behavior of a simply supported beam of rectangular cross
section under pure bending.
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6.4 CALCULUS OF VARIATIONS

The caiculus of variations is concerned with the evaluation of stationary
values or extremals (maximum or minimum quantities) of functionals.
Functionals are definite integrals of function(s). The function(s) in these
integrals are unknown(s) and the calculus of variations is used to
determine the conditions for which these function(s) will assume a
stationary value.

The calculus of variations differs from ordinary calculus in that the
former deals with functionals while the latter deals with functions.
Functionals are functions of functions, whereas functions are just
functions of variables. In applying the calculus of variations to extremize
a functional, one does not obtain the function. Instead, one obtains
conditions that the function{s) must satisfy to ensure that the functional
will assume a stationary value. In contrast, in applying the ordinary
calculus to extremize a function, one obtains the variable(s) for which the
function will assume an extremum value,

Detailed discussion of the theory of the calculus of variations is beyond
the scope of this book. However, we shall use two examples to
demonstrate the application of calculus of variation in conjunction with
the principle of stationary total potential energy in establishing the
necessary conditions for the solutions of the following;:

1. The in-plane buckling problem of a hinged-hinged column.
2. The lateral torsional buckling problem of a rectangular beam under
pure bending.

6.4.1 In-Plane Buckling of a Hinged-Hinged Column

Figure 6.6 shows a perfect column in a slightly deformed configuration at
the instance of buckling. Here, we shall use the calculus of variation in
conjunction with the principle of stationary total potential energy to
determine the conditions that must be satisfied by the column if it is to be
in equilibrium in this slightly deformed configuration.

In applying the principle of stationary total potential energy [Eq.
(6.3.6) or (6.3.7)], we need to evaluate the strain energy U and the
potential energy V of the column. They are derived separately in what
follows.

Strain Energy

In general, the strain energy function of a three-dimensional elastic solid
element (linear or nonlinear) can be expressed as

U=de=ffaijds,.,.dV (6.4.1)
Vg
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FIGURE 6.6 Hinged-hinged column P

where, for brevity, we have used

0 de;= 0, deg + gy dey + Ty dy + - -
0;; = stress tensor (Fig. 6.7)
g;; = strain tensor
V =volume of the element
£p = initial value of the strain tensor
g;= final value of the strain tensor

If the system is linear elastic, Eq. (6.4.1) can be simplified to
1
U =§ J-vﬂ'ijfij dv (642)

For the column shown in Fig. 6.6, the strain energy consists of two
components; that is due to the axial shortening effect I/, and the bending
curvature effect {},. They are described as follows:

Strain Energy Due to Axial Shortening Effect, U,. As a result of the

FIGURE 6.7 Stress tensor (.
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FIGURE 6.8 Axial and bending stresses in an elastic column of buckling

axial force P, axial stress o,, will be present in the cross section (Fig.
6.8a); this stress can be expressed as

P
" = — 6.4.3
Cu=1 (6:4.3)
where
P = axial force
A = cross-sectional area
The axial strain associated with this stress is
g P
== 4.4
= = A (6.4.4)

Since the other components of stress, except the axial stresses due to
axial force and to bending moment o,,, are zero, we can substitute o,
for o;; and s, for &; in Eq. (6.4.2) to obtain U, as

e (L)

Substitute dV by dA4 dx, where A is the area of the cross section, and
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U zfj ( )dAdx

=5f0 adx (6.4.6)

Equation (6.4.6) can be expressed in terms of the axial strain
£x, = dut/dx, where u is the axial displacement by recognizing that

we have

du
P=FEAg, = EAE (6.4.7)
therefore
1t (du E
U,,—EJ; EA a) dx (6.4.8)

Strain Energy Due to Bending, U,. Figure 6.8b shows the stress
distribution over the cross section of the column due to a bending
moment M. From the basic mechanics of materials, it can be shown that
the bending stress o, is given by

Uxb:T (649)

where
M = bending moment
y = distance from neutral axis to the point where o, acts
I=moment of inertia of the cross section

The corresponding bending strain is

Ixr _ My

= (6.4.10)

Exb =
Since simple bending is basically a one-dimensional problem, the strain

energy of the column due to bending can be obtained by substituting o;;
by o, and ¢; by £, into Eq. (6.4.2)

w3 [ (PNE v =[(F) v wam

If we replace dV by dA dx, where A is the area of the cross section, we

can write Eq. (6.4.11) as
f j ( ) dA dv (6.4.12)

U, =% fo L% (%)2( L 52 dA) dx (6.4.13)

or
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Recognizing that [, y*dA =1, the moment of inertia of the cross
section, we can write

1 (L m?
U==-| — 4.14
, b 2f0 Eldr (6.4.14)

An alternate form for U, in terms of the curvature d*v/dx® instead

2

d..
of the moment M can be obtained if we substitute M = —Ef (IZ) into
Eq. (6.4.14)

1E | rd*uy?
== — 4.1
U, ?-L EI( 2) dx (6.4.15)

where v is the lateral deflection of the column.
By combining Eq. (6.4.8) with Eq. (6.4.15), the total strain energy of
the column in Fig. 6.6 is

U=U,+U,
1t du\? 1L rd%n?®
_EJ; EA(E) dr-l-ELEI(E) dx (6.4.16)

Potential Energy

Since the work done by the external forces can be represented by a
decrease in potential energy of the system,

cht =-V (64 17)
it follows that
V=-W, (6.4.18)

In other words, we can calculate the potential energy of the system by
evaluating the work done on the system by the external forces,

For the centrally leaded column shown in Fig, 6.6, the external work
done on the system is

W =PA (6.4.19)

where A is the shortening of the column.

It is important to observe that the factor one-half does not appear in
Eq. (6.4.19} because at buckling the force P is acting at its full constant
value when the column passes from the straight to the slightly bent
configuration. As a result, the factor one-half, which should appear if the
force is increased linearly from zero to its full value during the
deformation process, does not appear here.

The shortening of the column A in Eq. (6.4.19) consists of two parts:
an axial shortening A, and a bending shortening Ay,. The axial shortening
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FIGURE 6.9 Bending shortening of
an infinitesimal element

can be obtained by integrating the axial strain &,, = du/dx over the length
of the column, that is

L L du
Au=f mdx=f g 6.4.20
) dr (6.4.20)

The bending shortening, on the other hand, requires more computa-
tions. Consider Fig. 6.9, in which an infinitesimal element of length dx is
shown. Before bending occurs, the element assumes the position AB.
After bending, the element assumes the position AB'. The differential
shortening due to this change in the element is

dA, = dx(1— cos 8) (6.4.21)

where @ is the angle between the undeformed and deformed elements.
The triponometric function cos 6 can be expressed in series form as

cos@=1-162+%6—--- (6.4.22)

Using only the first two terms in the series and substituting them into
Eq. (6.4.21), we have

dA,=16%dx (6.4.23)
For small bending deformation, 6 can be represented by dv/dx. Thus,
Eq. (6.4.23) can be written as

1 /dvy\?
Ap== (22 4.
dA, Z(d.x) dx (6.4.24)

The total shortening of the column due to bending can be obtained by
integrating Eq. (6.4.24) over the length of the column:

L 1 & sdv\?
A=fdA =—f (—) 6.4.25
o= | dto=3 | () o (6.4.25)
Finally, in view of Eqs. (6.4.18) and (6.4.19), the potential energy of
the column in a slightly bent configuration is

V=—PA
==__}D(an*'lkb)

o @@ e



6.4 Calculus of Variations 387

Total Potential Energy of the Column

By combining Eqs. (6.4.16) and (6.4.26), the total potential energy of the
column can be expressed as

O=U+V
=3[ Ea() s [ m(5R) as
—Pj (d“)d ——j (d”) dx (6.4.27)

For equilibrium, the first variation of the total potential energy of the
column must vanish

STI=3(U + V)=8U + 6V =0 (6.4.28)
since
su=["ea(ly) o) &+ [ (53 o(53) o
—EA!(dJ( )dx+E4-( )(i;?)m: (6.4.29)
and

o= s -2 o(5)

=_PJLd6udr Pj ( )(ig?)dx (6.4.30)

therefore, Eq. (6.4.28) can be written as

o= (220 a1 (£ 52)

—Pf 4o o _p f (d”)(izf)dx 0 (6.4.31)

By examining Egs. (6.4.29) and (6.4.30), the reader should recognize
the similarity in operation between the variational operator § and the
differential operator d. Furthermore, it should be noted that the two
operators are commutative.,

To transform the terms involving derivatives of du or dv so that a
common factor of du or dv will appear in the terms of Eq. (6.4.31), we
need to make use of integration by parts. For the first term

oo (420
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letting
d déd
dx dx
and knowing
L L L
jpdq=pq —j q dp (6.4.33)
0 0 Jo
we have
Lrdufd Su du
had dy = — — Aj —6 d .4.34
EAJ;(dx)(dx) EAd 6u udr (6.4.34)

Similarly, for the second term

w1 () () o

d d* v
dx® and  dg = dx?

and using Eq. (6.4.33), we have

s (G @) e s @) 2]

0

—Ezf( )(déu)dx (6.4.36)

The derivative of dv in the last term of Eq. (6.4.36) can be eliminated
by using integration by parts again. Letting
d*v

d du
P —-E and dq = (?) dx (6,4.37)

if we let

p= dx (6.4.35)

we can obtain

o (22 e {241

U
LEI L ovds (6.4.38)

L

0

Because év =0 at x =0 and x = L, and because we are concerned only
with virtual displacements that are kinematically admissible, the first term
of Eq. (6.4.38) vanishes. With this in mind, and upon substituting Eq.
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(6.4.38) into Eq. (6.4.36), we have

a1 (G () = Ef(i;)(%)

L

0

+EIf — év dx (6.4.39)
For the third term of Eq. (6.4.31)
_p J’ Ld 6u
Using integration by parts [Eq. (6.4.33)] with
dé
p=1 and dq —Euir (6.4.40)
we can write
Ld éu
P f — _Péult (6.4.41)

Finally, for the last term of Eq. (6.4.31)

£ ()

by letting
dv d v
we can obtain ]
Lrdvyrd (5v) du L
o[ () - A
+Pf év dx (6.4.43)
Realizing that Su =0atx=0and x = L, Eq. (6 4.43) becomes
du\fd &
—Pf ( ”)( dx”) dx = Pf &Y s ds (6.4.44)

Substituting Eqs. (6.4.34), (6.4.39), (6.4.41), and (6 4.44) into Eq.
(6.4.31), upon rearranging we obtain

8Tl = (EA——P)«S & jEA = dx bu
d*v\/d v Ly d'w d*v
(Eldﬁ)( ) ; f (Eldx" dxz) dx Gv
=0 (6.4.45)
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or

du - du L d
(EAE—P) aul;:r(EAE—P) 6ulx=o—LEA 7 dx Su

T
dx’
d*u du
* (EIE)(‘S z)

d*v dv
T (EIE) (‘55)

L d*v d*
+J (EI—+ P dx du
a dx*

x={0

d.x2
=0 {6.4.46)
Since Sv and du are arbitrary and can take on any value for the
interval 0 to L, to ensure that Eq. (6.4.46) is satisfied regardless of the

value of dv and dou, each and every term in Eq. (6.4.46) must vanish.
Therefore, we have, from the first term, either

du
FA—— P) =0 4.4
( A e . (6.4.47)
or
Sulp—r =0 (6.4.48)
and from the second term
du
EA—— ) = 4.4
( It P i 0 (6.4.49)
or
Ott] =g = (6.4.50)

and from the third term

L d?.
j EA% ax =0

b T dx?
or
d2
EA dxﬁf =0 (6.4.51)
and from the fourth term
El @ =0 (6.4.52)
2, 4.
or
du
o (—) ={ 6.4.53
| | (6.4.53)
and from the fifth term
d*v
El— =0 6.4.54
dxz _— ( )
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or 4
v
5 (-—) =0 4
o (6.4.55)
and from the sixth term
Ly d% d*v
J; (EIE'i-PE)dx—O
or
d*v d’v
E1E+PF_O (6.4.56)

Close scrutiny of Eq. (6.4.46) shows that the first three terms contain
only the axial displacement, u, as the variable, whereas the last three
terms contain only the transverse or lateral displacement, v, as the
variable. Since they are uncoupled, we can treat them separately. In fact,
the first three terms in Eq. (6.4.46), and therefore the conditions
expressed in Eqs. (6.4.47) to (6.4.51), pertain only to the axial shortening
effect on the column, whereas the last three terms in Eq. (6.4.46), and so
the conditions expressed in Eqs. (6.4.52) to (6.4.56), pertain only to the
bending curvature effect on the column. When an axial force is applied to
a column, it undergoes axial shortening. This behavior is described by
Eqgs. (6.4.47) to (6.4.51). When the axial force is increased to the point
where bifurcation of equilibrium is reached, the column can be in
equilibrium either in a straight or in a slightly bent configuration. The
behavior of the column in the slightly bent configuration is described by
Eqgs. (6.4.52) to (6.4.56). In Chapter 2, when the buckling behavior of
columns was described, only the bending deformation was considered,
the axial deformation was ignored. This is because the axial deformation
that occurs before buckling has no bearing on the evaluation of the
critical loads of the columns. The critical loads were obtained by an
eigenvalue analysis that considered only the bending behavior of the
columns at the point of neutral equilibrium where the column can be in
equilibrium in both the original straight and slightly bent configurations.
Therefore, the equations describing the axial compression of the columns
were never written. However, in this section a more general formulation,
taking into account both axial and bending deformation, is employed. As
a result, we obtain two sets of equations: one depicting the axial
compression effect, and the other depicting the bending deformation
effect. Since these two sets of equations are independent of each other,
we shall examine them separately.

Axial Effect

Equations (6.4.47) and (6.4.49) express the natural {or force) boundary
conditions of a column under an axial force P, whereas Eqs. (6.4.48) and
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(6.4.50) express the geometric (or kinematic) boundary conditions of the
column. For the column shown in Fig. 6.6, it is obvious that the axial
displacement at the end x = L is not zero, therefore du #0atx=L. Asa
result, we must have from Eq. (6.4.47)

du
— =P 6.4.57
EA e ( )
At x =0, the end is pinned, therefore we must have
Sulimo=0 or ul,_q=0 (6.4.58)

In other words, the axial force at the top end of the column is equal to P
and the axial displacement at the bottom end of the column is equal to
zero.

Equation (6.4.531) is simply the differential equation for an axially
loaded column subjected to concentrated force at its ends.

Bending Effect

Equations (6.4.52) and (6.4.54) express the natural {or force) boundary
conditions of a column in a slightly bent configuration, whereas Egs.
(6.4.53) and (6.4.55) express the geometric (or kinematic) boundary
conditions of the column. For the column shown in Fig. 6.6, it is obvious
that the end slopes are not zero, therefore 6(dv/dx)#0 at x=0 and
x = L. Consequently, from Eqs. (6.4.52) and (6.4.54) we must have

d*v
El—; =0 6.4.5
I a2l (6.4.59)
and
d*v
El— =0 6.4.60
L o ( )

Recall that M = —EI(d*v/dx?). Thus, Eqgs. (6.4.59) and (6.4.60) indicate
that there is no bending moment at the ends of the column.

Equation (6.4.56) is simply the differential equation for a column in a
slightly bent configuration.

As have been demonstrated in the above example, by using the
principle of stationary potential energy, not only are we able to obtain
the differential equations of equilibrium of the member, but we obtain
the boundary conditions as well. In using the principle, the only two
quantities required are the strain energy function U and the potential
energy function V of the system. Here, it is not necessary to draw the
free-body diagrams, as would have been required in the conventional
approach. Because of this, the energy principle will be more appropriate
for problems of more comphcated nature.

Note that if we have considered a fixed-fixed column or a fixed-pinned
in this example, we will have obtained the same result. The reason is that
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the expressions for the strain energy U and the potential energy V will
not change. Although it is quite obvious that &/ will not change because it
is independent of the boundary conditions of the member, the fact that
V, which is dependent upon end conditions and loadings of the members,
will not change for a fixed-fixed or a fixed-pinned column is a fact that
deserves some explanation. For example, for a fixed-fixed column, the

expression for V is
Lrdu P (E/duy? dv dv
ve-rl (@)e-z ) (@) - (g)| - ()
o \dx 2 Jp \dx dx/ =g dx/le_y
(6.4.61)

The first two terms in Eq. (6.4.61) were explained earlier in this section:
they are the work done by the axial force P as the force P travels through
an axial shortening A, and a bending shortening A,. The third and fourth
terms represent the work done as the end moment acts through an end
rotation dv/dx at x =0 and x = L, respectively. However, for a fixed-
fixed column

| _dv| _,
d-x x=0—dx .r=L_
therefore, Eq. (6.4.61) reduces to
Lrdu P (L/duy?
reorf @act e e
L \ax dx 2 ) \dr dx (6.4.62)

which is the same as that for a pinned-pinned column [Eq. (6.4.26}].

The same argument applies for a fixed-pinned column. At the fixed
end, the work done by the end moment equals zero because the end
rotation is zero. As a result, the only work done is that resulting from P
acting through the axial and bending shortening of the member. Figure
6.10 summarizes the three cases discussed. Since the bending deforma-
tion is of primary concern, the conditions shown in the figure correspond
only to the effect of bending.

To further demonstrate the use of the principle of stationary potential
energy to tackle problems of elastic stability, we will establish the
conditions describing the lateral torsional buckling of a rectangular
section in the following section.

6.4.2 Lateral Torsional Buckling of a Rectangular Beam
Under Pure Bending

Figure 6.11 shows a rectangular beam subjected to pure bending. Here,
as in Chapter 5, two sets of axes are established. A fixed plobal
coordinate axes (x,y, z) relative to the undeformed member and a
movable local coordinate axes (x',y’,z') relative to the deformed
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FIGURE 6.10 Boundary conditions of columns with idealized end conditions

member will be used. The assumptions of linear elastic behavior, small
deformations, and no distortion in member cross-sectional shape during
buckling still apply. To establish the conditions governing the lateral
torsional buckling of this member using the principle of stationary total
potential energy in conjunction with the calculus of variations, we need
to develop expressions for the strain energy U/ and the potential energy
V. They are derived separately in the following.

Strain Energy

The strain energy for this member consists of three components: the
strain energy due to bending about the x' axis U}, the strain energy due
to bending about the y' axis U}, and the strain energy due to twisting
about the z' axis U,. These components of strain energy correspond,
respectively, to in-plane bending, out-of-plane bending, and twisting of
the member at the instant of lateral torsional buckling. All these
components of strain energy can be derived from Eg. (6.4.2) by
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FIGURE 6.11 Lateral torsional buckling of beam under pure bending

identifying the stress and strain components associated with the particular
deformations. However, here we will use an alternative approach. We will
make use of the fact that for an elastic system the strain energy stored in
the system is equal to the negative of the internal work performed in the
system, which in turn is equal to the external work done on the system:
that is,

U= —Wy, (6.4.63)

Thus, if we can obtain expressions for W,,,, the strain energy can be
obtained from Eq. (6.4.63).

From a free body of an infinitesimal segment of the beam at the instant
of buckling, like that shown in Fig. 6.12a, we can identify the various
components of moments M., M,., and M, acting on the cross sections.
The shear forces acting on the cross sections are not shown because it is
assumed that shear deformations are negligible compared to bending
and twisting deformations, so that the strain energy due to shear can be
ignored. Consequently, only the action of the bending moments M,., M,,
and the twisting moment M,  will contribute to the strain energy of the
member.

Strain Energy Due to In-Plane Bending, U,,. The increment of
external work performed as a result of in-plane bending is equal to
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FIGURE 6.12 Deformation of an infinitesimal element

one-half the product of the in-plane bending moment A,. and the change
in angle d6,. (Fig. 6.12b).

deexl = J?:Mx‘ dex' (6464)

The factor one-half is introduced because M,. increases from zero to its
full value linearly in the load sequence. Since
d*u
M. =FEl — .4.65
dz® © )
where

I, = moment of inertia of the cross section about the x axis

d2
-ﬁ = curvature of the member in the y—z plane
and
d2
46, =2 dz (6.4.66)

dz?
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we have
AW, =%EI, (%ﬁ)zdz (6.4.67)
and so
Won =21 fu LEI,((;—?;)Z dz (6.4.68)
In view of Eq. (6.4.63), we have
Vs =% L LEI,(Z—?;)Z dz (6.4.69)

Strain Energy Due to Out-Of-Plane Bending, U,,. The increment of
external work performed as a result of out-of-plane bending is equal to
one-half the product of the out-of-plane bending moment M,. and the
change in angle d6,. (Fig. 6.12c).

1
dMX(=§My’ dBy’ (6470)
Since
d%u
M, =El—; 4,71
b b de (6 )
where

I,= moment of inertia of the cross section about the y axis

d*u
= curvature of the member about x-z plane

dz?

and
d’u
we have
1 d*u\?
D=b () .
Wert 5 ELl 52 dz (6.4.73)

and so

1 L dzu 2
== ks 6.4.74
Wor=5 j EL(75) 2 (6.4.74)
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From Eq. (6.4.63), we can write

Uy =5 j EI (d ”) dz (6.4.75)

Strain Energy Due to Twisting, U,.. The increment of external work
performed as a result of twisting is equal to one-half the product of the
twisting moment M, and the change in the angle of twist dy (Fig. 6.12d)

dW., = 3iM, dy (6.4.76)
Since, from mechanics of material (see Eq. 5.2.5, page 311)
dy
M, =Gi— 6.4.77
where dz ( )

(G = shear modulus
J = torsional constant
= hb?/3 for thin rectangular cross section

d . . P )
EZ = change in angle of twist per infinitesimal distance dz
Z

and d
Y
=t .4.78
dy 1z dz (6.4.78)
we have
2
dm;t( =1 Gj(i}:) dz (6.4.79)
2 dz
and so
1 (%, rdy\?
=5 | GH{EE) 6.4.80
W, 2k G 1) © ( )
Finally, from Egq. (6.4.63), we have
1 a'y) :
. 4.
Uo=3 | GJ( ) dz (6.4.81)

Combining Eqs. (6.4.69), (6.4.75), and (6.4.81), the total strain energy
U/ stored in the beam is

U—be+U1,,+U
d*v d*u
2 EI(dz)dz-i— jm(d )dz

L dY 2
+= J (-——) .4.8
2 fu G. 1z dz (6.4.82)
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With the strain energy expression for the beam in Fig. 6.11 developed,
the next step is to develop the expression for the potential energy for the
beam.

Potential Energy

The potential energy of the beam in its buckled configuration consists of
two parts: the potential energy developed as a result of in-plane bending
(V1) and the potential energy developed as a result of out-of-plane
bending and twisting (V;). They are described as follows:

Potential Energy Due to In-Plane Bending, V,. The potential energy
due to in-plane bending of the beam is equal to the negative product of
the applied moments M, and the end rotations (Fig. 6.13a):

v~ 2| el =5
(6.4.83)

The minus sign for dv/dz in the first term of Eq. (6.4.83) is because the
slope is negative at end z = L.

L

0

FIGURE 6.13 In-plane and out-of-plane deformation of the beam at buckling

ta)
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Potential Energy Due to Out-of-Plane Bending and Twisting, V5. The
potential energy due to out-of-plane bending and twisting is equal to the
negative product of the applied moments M, and the rotation of the end
cross sections « as the beam buckles

Vo= -2M.o (6.4.84)
where, as in Fig. 6.13b,
1 Atop - AImtmm
= .4.85
o 5 h (6.4.85)

In Eq. (6.4.85), A,,p and Apguom are the bending shortening of the top
and bottom fibers, respectively, of the cross section, while & is the height
of the cross section.

These bending shortenings can be expressed as

du,,
Biop=3 f ( P) (6.4.86)
and
d olflom 2
Buiom =5 f (ﬂ—) dz (6.4.87)
From Fig. 6.14, it can be seen that "
top=u+ 12 (6.4.88)
h
Upottom = U — % (6489)

Substituting Eqs. (6.4.88) and (6.4.89) into Eqs. (6.4.86) and (6.4.87),
respectively, we have
(o)) e

s [ [z

%f () () @)+ 5 ()] o

Buotiom = 2,[ [dz( )] dz
L) (e

Finally, substituting Eqs. (6.4.90) and (6.4.91) into Eq. (6.4.85), and
then substituting the resulting expression for « into Eg. (6.4.84), leads to

V=M, L ’ (Z—:)(j—:) dz (6.4.92)
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FIGURE 6.14 Lateral displacement at the top and
bottom fibers of the beam

Combining Eqs. (6.4.83) and (6.4.92), the potential energy V of the
beam is

V=V1+V2

), [ (@) e

Total Potential Energy of the Beam

The total potential energy IT of the beam can be obtained by combining
Egs. (6.4.82) and (6.4.93)

[n=uv+v

2IEI( )d +2IEI( L’l) d

[ o) e em(@)] -m [ (E)D)
+2L Gj(dz) dz + M, 2, ) \z@\g dz  (6.4.94)
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For equilibrium, the first variation of the total potential energy of the
beam must vanish, that is

L d%y d*v du d’u
‘5“—fn E(52) 8(57) ez +f E1(53) o(5)
Y d-y) (dv)
+[ ( ) 0 dz dz + Mo dz

ol (2o

[ el () ae+ [ ol )G o
[ mo(F),

M,L (%‘)(dé")d —M[( )(da“)d -0 (6.4.9)

Using integration by parts as done previously to eliminate derivatives
of the variation, and realizing that Su=du=68y=0atz=0and x =1L,
it can be shown that Eq. (6.4.96) can be written as

(B ‘; 2+M)(a )
(g6 E),

d*y d*u

J——=— M.~ |dzdy=0 6.4.

f (G dz? My dzz) zoy 6.4.97)

To ascenain that Eq. (6.4.97) is satisfied for all arbitrary values of dv,

du, and &y, each and every term of the equation must vanish, that is, for
the first term, either

(6.4.95)
or

IEde 7 dz 6v

d4 2
+J (EfydT-i-Md )dzéu

2
(EI,§2+M) 0 at z=0 and L (6.4.98)
or
dv
a(:i;)=o at z=0 and L (6.4.99)

and for the second term

L 4%
1.5 " dr =
J;,E‘dz“dz 0
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or
d*v
EL°%=0 4,
L (6.4.100)
and for the third term
d2
EL55=0 at z=0 and L (6.4.101)
Z

or

6(du) 0 at z=0 and L
dz

and for the fourth term

4y 2
f (Efi—ﬂw f——)d —0

.'u’d 4 xd
or
d*u d*y
EIyd_ZE-{- de—za— 0 {6.4.102)

and for the fifth term

dz dz
Y M, )d:
_L(do‘ i z=0

or
d*y d’u
G.sz2 M, i 0 {6.4.103)

The first two terms of Eq. (6.4.97), and, therefore, the conditions
expressed in Eqs. (6.4.98} to (6.4.100) refer to the in-plane bending
behavior of the beam. Because the member is simply supported, it is
obvious that 8(dv/dz)+#0 at z =0 and L; we therefore have

d*u
—EI"d_zizM" at z=0 and L (6.4.104)
which are the natural boundary conditions stating that the moments
about the x axis at the ends are equal to the applied moment. The minus
sign indicates that a positive moment corresponds to a negative
curvature.

Equation (6.4.100) is simply the differential equation of equilibrium
governing the in-plane bending behavior of the beam.

It should be noted that for small displacement analysis, this in-plane
behavior is uncoupled with the out-of-plane behavior of the beam and,
therefore, can be examined independently.

The out-of-plane or lateral torsional buckling behavior of the beam is
expressed in the last three terms of Eq. (6.4.97), and so the conditions
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expressed in Eqgs. (6.4.101) to (6.4.103) apply. Again, because the beam
is simply supported, it is obvious that §(du/dz)#0 and z=0 and L.
Therefore, Eq. (6.4.101) will apply. Equation (6.4.101) expresses the
natural boundary conditions of the beam that state that the moment
about the y axis vanishes at the simply supported ends.

Equations (6.4.102) and (6.4.103), which correspond, respectively, to
Egs. (5.4.8) and (5.4.9), express the lateral torsional buckling behavior of
the beam. By eliminating the variable u, these two equations can be
combined to give

dy &
d_.j +k? d—; =0 (6.4.105)
where
M?.
K=t (6.4.106)
Y

Equation (6.4.105) corresponds to Eq. (5.4.11) in Chapter 5. Equation
(5.4.11) was developed using the conventional free-body approach,
whereas Eq. (6.4.105) was developed based on the variational principle,
using the principle of stationary total potential energy of the system.
Although comparable differential equations of equilibrium were de-
veloped using either approach, the energy approach has the added
advantage that the natural boundary conditions were obtained as well in
the solution process. Furthermore, as pointed out earlier, in using the
energy approach we need only consider the energy of the system. The
merit of using an energy criterion to characterize the conditions of
equilibrium of an elastic system will be obvious for systems involving
complicated geometries. For such systems, it is usually much simpler to
establish the energy expressions and derive the governing differential
equations of equilibrium using the calculus of variations rather than to
develop the differential equations based on the free-body approach.
Nevertheless, one should bear in mind that the stationary total potential
energy approach can only be used for systems exhibiting elastic behavior.
For systems exhibiting inelastic behavior, recourse to numerical methods
is often necessary.

The application of the energy method to determine approximate elastic
buckling loads of members will be presented in the next two sections.
The two methods to be presented here are the Rayleigh—Ritz method and
the Galerkin method. In addition, we will present two numerical
methods, the Newmark method and numerical integration method for the
analysis of inelastic members, in the later part of this chapter.

6.5 RAYLEIGH-RITZ METHOD

In the previous section, the extremum principle, using the calculus of
variations operating on the total potential energy of a system, was
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applied to establish the governing differential equations of a system.
However, the solutions to the differential equations are not obtained in
this extremization process. For practical purposes, it is also necessary to
obtain the critical loads from these governing differential equations.
Theoretically, the exact elastic critical loads can be solved from these
equations using the method of eigenvalue analysis described in Chapter
2. For many practical problems, however, the exact solutions to the
characteristic equations of the differential equations are often difficult, if
not impossible, to obtain, and recourse must be had to approximate or
numerical methods to obtain solutions. In the following, we shall present
a simple method to obtain an approximate solution of the critical load.
This method is called the Rayleigh-Ritz method. In this method, an
assumed displacement function satisfying the geometric boundary condi-
tions of the system is used in the expression for the total potential energy
function IT. By using such an assumed displacement function, a structural
system with an infinite degree of freedom is now reduced to a system of
finite degrees of freedom. As a result of this simplification, the total
potential energy function reduces from a functional to a function, and,
so, instead of using the calculus of variations (which operates on
functionals), we can now use ordinary calculus (which operates on
functions) to obtain solutions directly from the total potential energy
function.

The use of an assumed displacement function to approximate the true
displacement of the system was first introduced by Rayleigh.*? To
illustrate this method, let us assume that the buckled shape of the
member has the approximate form

v=a¢ (6.5.1)
where

7 = assumed lateral displacement of the column
¢ = arbitrary function satisfying the boundary conditions of the column
a = undetermined coefficient

Upon substituting Eq. (6.5.1) into the strain energy and potential energy
expressions, we obtain

0= {_j(a) (6.5.2)
V="V(P, a) (6.5.3)

The use of a bar above the strain energy {/ and the potential energy V
expressions emphasizes that they are not the true strain energy and
potential energy of the system but are approximate values as a result of
using an approximate deflection curve.

Using the principle of stationary total potential energy, the equilibrium



416 Energy and Numerical Methods

configuration of the member is identified if

S(T+V)=0 (6.5.4)
Since {7 and V are functions of a, we can write Eq. (6.5.4) as
O
SUAY) sa—0 (6.5.5)
da

or, because da is arbitrary, we must have
AU+V) 0

da -
The value of P satisfying Eq. (6.5.6) is the critical load of the member.

To obtain a better result, a series of arbitrary functions ¢;’s can be
used as the assumed deflected shape of the member. That is, we can let

(6.5.6)

I

D=a,p;+axds+ -+ aup, = >, ad; (6.5.7)
i=1
The use of this approach was due to Ritz,* which is essentially an
extension of the Rayleigh method, in which only one arbitrary function is
used.
Upon substituting Eq. (6.5.7) into the strain energy and the potential
energy function, we have

0= C’(al, A, « o+, a,,) (6.5.8)
V=V(P, ay,a,,...,a,) (6.5.9)

In view of Eq. (6.5.4), we have
g(_g+_1/)6ai=0, i=1,2,...,n (6.5.10)

aai

or, since da; are arbitrary, it follows that

a(0+17)=0

3 (6.5.11)

Equations (6.5.11) represent a system of n simultaneous homogeneous
equations with the a’s and the load P as unknowns. For nontrivial
solution of a’s, the determinant of the coefficient matrix of the system of
equations (which contains P as a variable) must vanish. The lowest value
of P that renders the determinant of the coefficient matrix zero is the
critical load of the member.

The following examples are selected to illustrate the use of Rayleigh—
Ritz method to obtain approximate elastic critical loads for columns and
beams,
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Example 6.1, Critical I.oad of a Cantilever Column Loaded at the Tip
Figure 6.15a shows a cantilever column loaded by an axial force P at the
tip. The exact elastic buckling load, P, =s’EI/4L>=2.47EI/L? has
been obtained in Chapter 2. We now want to obtain an approximate
solution of the critical load using the Rayleigh—Ritz methaod.
soLuTioN: Assume the deflection shape of the cantilever column to be

b =ax? (6.5.12)

Since ©(0)=o'(0)=0, the assumed deflection function satisfies the
geometric boundary conditions of the member.
The total potential energy of the member is

n=v+v

1 i P [t /duy?
EI(dr) dt—;fo (E) dx (6.5.13)

Substituting Eq. (6.5.12) into Eq. (6.5.13), we have
_ _ _ 1 L P L
o=+ V=—f EI(2a)*dx ———j (2ax)* dx
25 24
=2a*EIL — %Pa*L? (6.5.14)

Using Eq. (6.5.6), the critical load can be obtained as
8(0+V) 8(2a°EIL —2Pa’L[3)

da da
X 5 FIGURE 6.15 Tip-loaded cantilever
p column
o)
—_1
v .
L — iy
P
(b)
" I

(a)
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or
4aEIL — APal’{3=0

from which we have

Ef
P.=3 I {6.5.15)
Comparing with the exact elastic critical load of 2.47EI/L? we see that
the approximate critical load is 21% in error.
The approximate solution can be improved if we use Eq. (6.4.14)
rather than Eq. (6.4.15) for the strain energy of the column. The moment

expression for the column can be written as
M=P(A—v) (6.5.16)

where A is the lateral tip deflection of the column (Fig. 6.15b).
From Eq. (6.5.12), we know

A=al? (6.5.17)

Thus, the strain energy can be written as

_ 1 (L[P(aL?— ax®)] 8 P?a?L’
== ~————dx== 6.5.18
u 2 .’; El 30 EI ( )
The total potential energy of the column becomes
- - - 4 PWfL3
= V=— - 3Pa*L? .5.1
[I=u+ 5l $Pa°L (6.5.19)
from which the equation for the critical load is obtained
o (i Plal? %Pa2L3)
qU+Vv) "\15 EI _0
da da B
or
8P%aL’® |
—ipgy3=
T
Solving the equation, we obtain
El
Pc,=2.5E (6.5.20)

Compared to the exact solution of 2.47EI/L? we see that the
approximate solution for P, is just 1.2% in error. Since the assumed
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FIGURE 6.16 Comparison between exact and approximate deflection, slope,
and curvature of the cantilever column

deflection shape [Eq. (6.5.12)] is not the true deflection curve of the
column, the strain energy evaluated based on Eq. (6.4.14) and Eq.
(6.4.15) will be different because the error involved by using the moment
expression is different from the error involved in the curvature expres-
sion. In general, if a function is in error, the derivatives of the function
will be in larger error. For instance, Fig. 6.16a-c shows a comparison
between the actual and assumed deflection, slope and curvature of the
cantilever column. As can be seen, the error becomes more and more
noticeable for higher and higher derivatives. Since v” is in greater error
than v, the strain energy calculated using Eq. (6.4.15) will be less
accurate than that of Eq. (6.4.14). Consequently, a better solution can be
expected by using Eq. (6.4.14). Despite this shortcoming, Eq. (6.4.15) is
much easier to manipulate in actual computation of Eq. (6.4.14). As a
result, Eq. (6.4.15) is usually used in the calculation.

In Eq. (6.5.12), only one term is used for the assumed deflection curve.
We can therefore improve the approximate solution by adding more
terms to the deflection expression. For example, if we let

U =a,x*+ a,x? (6.5.21)
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the total potential energy can be written as

Nn=0+Vv
1L 7d*p\? P Lrdnn?
=3 UEI(E) dx‘zJ; (E) &
1 L
=5f EI(2a, + 6a,x)* dx
0

P L
-3 J’ (2a,x +3a,x%)* dx
0

=2FEIL(a%+ 3a,a,L + 3aiL?)
PL3 2 2r2
— o (20t + 45a,a,L + 27a3L7) (6.5.22)

Note that the total potential energy function is now a function of twa
variables 4, and a,. Using Eq. (6.5.11) with / =1 and 2, we have

HU+V 3
AU+V) =2FEIL(2a, +3a,L) — L (40a; +45a,L) =0 (6.5.23)
oda, 30
HO+V 3
AU+V) =2FIL(3a,L + 6a,L*) — PL (45a,L + 54a,L}) =0 (6.5.24)
da, 30
If we denote PL2
A=—0rn .5.25
£l (6.5.25)
Equations (6.5.23) and (6.5.24) can be written as
(24 —8A)a, + (36 —94)La, =0 (6.5.26)
(20—-5A0)a, + (40 —6A)La, =0 (6.5.27)
or, in matrix form, we have
(24 -8%) (36— 97&)L} (al) _ (O)
[(20 —54) (40—6ML\g,/ 0O (6.5.28)

For a nontrivial solution, the determinant of the coefficient matrix of
Eq. (6.5.28) must vanish

det

(24—81) (36— QA)L‘ 0 (6.5.29)

(20— 51) (40 —61)L

Expanding Eq. (6.5.29), we obtain
302 — 1044 +240=0 (6.5.30)
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The smallest positive root of this equation, called the characreristic
equation, is A = 2.49 and from Eq. (6.5.25), we obtain

1
P.=249 %—2 (6.5.31)

which differs from the exact solution by only 0.81%. The solution can be
further improved by using U = J§ (M*/EI) dx in Eq. (6.5.22). This is not
attempted here.

Example 6.2. Critical Load of a Cantilever Column Loaded at the Tip
and Midheight

In the preceding example, the Rayleigh—Ritz method has been used to
determine an approximate critical load of a relatively simple problem
whaose exact critical [oad is well known. In the following we shall consider
a more difficult or rather more cumbersome example problem.

Figure 6.17 shows a cantilever column loaded by two axial forces: one
at the tip and the other at midheight. The exact elastic buckling load as
obtained previously in Chapter 2 has the value of 2.067E1/L*.

soLuTtion: To solve the same problem using the Rayleigh—Ritz method,
we assume the deflected shape of the column at buckling to be
X
p=af1- —) 6.5.3
1] a( cos o~ ( 2)
Equation (6.5.32) is the exact deflection curve for a centrally loaded
calumn without the load at midheight. This shape becomes approximate

FIGURE 6.17 Cantilever column loaded at
midheight and tip
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for the column shown in Fig. 6.17 in which loads are present at both the
tip and at midheight.

Using Eq. (6.4.15), the strain energy of the column corresponding to
the assumed deflection shape is

2 4y dx*
1t a\t o omx]?
1B ]
5 DE [a 5L CDSZL dx
_ Ela*g’
= (6.5.33)
The potential energy is
_ 2P (L7 1 di\? P L rdoy?
e[ E (]
2 1] dx 2 L dx
2 [z
T2 Man/ ML
Pt 7 mx]?
_ Zsin==1| dx
2 J’m [“(2L) - ZL]
Pa’rn
=~ - 6.5.34
Using Eq. (6.5.6), we have at equilibrium
3(U+V) Elan* Pan
= — -—2 =
3a TR TT A
from which
x* EI El
P =————=209— 5,35
“2@r-2) L? 09 L? (© )

Compared with the exact solution of 2.067EI/L?, the approximate
solution is in error of just 1.1%.

It is worth mentioning here that the approximate critical load calcu-
lated using the Rayleigh—Ritz method is always higher than the exact
critical load. This is because when we use an assumed displacement curve
for the member, the member is mathematically constrained to displace
according ta the assumed shape rather than the natural shape, and so the
apparent stiffness of the member increases, as does the buckling load. On
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the other hand, when we use more terms for the assumed deflected shape
of the member, we are mathematically introducing more degrees of freedom
to the member. As a result, the stiffening effect of the constraint brought
by the assumed shape is reduced.

To obtain a reasonable critical load for a problem in the Rayleigh—Ritz
method, the deflection functions chosen for any problem must be
consistent with the geometric constraints of the problem. That is, the
displacement functions used must satisfy the geometric boundary condi-
tions of the problem. Furthermore, if the assumed displacement function
consists of more than one term [Eq. (6.5.7)], it is advisable to use
orthogonal functions for the ¢;'s whenever possible. Functions ¢, and ¢,
are said to be orthogonal if

L
f¢n¢bdx=0 for a#b (6.5.36)
1}

The merit of utilizing the orthogonality property of the functions will
be apparent in the following example.

Example 6.3. Critical Load of a Bar on Elastic Foundation

Figure 6.18a shows a bar resting on an elastic foundation and subjected
to a concentrated compressive force at the ends. As the bar buckles, the
elastic foundation will exert a force of kiloNewtons per unit length per
unit lateral deflection on the member (Fig. 6.18b).

FIGURE 6.18 Column on elastic foundation
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soLuTioN: Let the assumed deflection shape of the bar at buckling be
approximated by

D=2, aip; =, d;sin (ﬁ) (6.5.37)
i=1 i=1 L
The strain energy stored in the bar at buckling is then
_ 1t rdPDN?
-3 Bl @
- [fal$ = i
_E R
2?; f (Z a;i% sin ?)(Z a;i’ sm?) dx (6.5.38)
i=1

Equation (6.5.38) can be simplified if we use the orthogonality property
of the sine function. It can easily be shown that

L
Jsinaxsinbxdx=0 for a#b (6.5.39)
0

In view of Eq. (6.5.39), Eq. (6.5.38) can be simplified to
_ EIx" X
U= Zqu(EatsmL)dx
4, Elx*a?i
=) —— .5.40
;=ZI TE (6.5.40)
The potential energy of the bar is

- du
- [ s} e

_P L aimw  mx
2 (Z L COST) dx

2 ; (za sm—) dx

i=1

P J’ (z azcosl—ELi)(z azcosEEE) dx

ZLZ f=1 i=1

2J (2 % 5‘“—)(2 a sini—ELf) dx (6.5.41)

i=1 i=1

The first term in Eq. (6.5.41) represents the familiar potential energy
change resulting from bending shortening. It is negative because the
corresponding external work done is positive as the directions of force
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and displacement are the same. The second term represents the potential
energy change due to the foundation’s resistance to buckling of the bar.
It is positive because the corresponding external work done is negative as
the directions of the resistance force from the foundation and the lateral
displacement of the bar are opposite.

To simplify Eqgs. (6.5.41) and (6.5.24), we again use the orthogonality
property of the terms in the assumed displacement function. For cosine
function, it can easily be shown that

L
fcosaxcosbxdx=0 for a#b (6.5.42)
0

and in view of Eq. (6.5.39), Eq. (6.5.41) can be simplified to

- Pr® (k& imx
V= __J- ( 22 2._) dx
7 ) i;ai cos

k L, n _"
+EL (glaizsin“l—?)dx

n paa?? 2 kall
_—El 4r +f=21 4

(6.5.43)

If we substitute Eqgs. (6.5.40) and (6.5.43) into Eq. (6.5.11), the critical
load can be obtained from the condition

3(U+V) Eln'a, Pa’a | arL

=0
Ba, 2L° 2L 2
and o
3(0+V) Ein'a,2' Pa*a2” N ka,L 0
da, 207 2L 2
and
3 F 44 2 2
a(lu+ V)=EIJ'1: a;n _ Pata.n +ka,,L___0 (6.5.44)
oa, 2L 2L 2
from which, we obtain
kL?
=P1
Pcrl Pc[ +JT2P3:|
kL*
kL2
P.= Pe[n2 + ngﬂgpj (6.5.45)
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FIGURE 6.19 Critical loads and buckling modes of the column on elastic
foundation

where
T2El
p= TLz .

Any one of the above expressions can be the critical load of the bar.
The one that governs depends on the stiffness of the foundation. Figure
6.19 shows a plot of the nondimensional critical load P../P, versus the
parameter kL?/m*P.. As the stiffness k of the foundation increases, the
buckling mode of the bar is seen to change to the higher mode and the
corresponding buckling load is also increased.

Heretofore, the Rayleigh—Ritz method has been used to determine
approximate in-plane buckling loads of columns or bars. In the following
examples, the Rayleigh-Ritz method will be used to determine the
approximate lateral buckling loads of beams.

Example 6.4. Lateral Buckling Load of a Cantilever Strip

In this example, the Rayleigh—Ritz method will be used to determine the
critical tip load acting at the centroid of the cross section that will cause
lateral buckling of the cantilever sirip as shown in Fig. 6.20.

soLuTioN: The strain energy stored in the member during buckling is

1pE rdu\: 1k idy\?
== | EL{*= = i 5.
U ZJ;E,(dzz) a’z+2L GJ(dZ) dz (6.5.46)
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FIGURE 6.20 Tip-loaded cantilever strip

Note that Eq. (6.5.46) is similar to Eq. (6.4.82), except for the
omission of the term 1 [§ EL(d*v/dz*)*dz. This term, described pre-
viously in Section 6.4, corresponds to the in-plane deformation of the
member that exists before buckling. This in-plane action uncouples from
the lateral buckling action in a small displacement analysis; hence, it has
no effect on the lateral buckling load and therefore it is omitted in the
analysis.

The strain energy expression in Eq. (6.5.46) contains two variables, u
and y. To facilitate computation, it is more desirable to express the strain
energy in terms of only one variable y. This can be done by reference to
Fig. 6.21. From the figure, it can be seen that

du dv
M, = —yM,——zMz— yP(L—2) —d—zP((S —u)

d
=yP(L—z) (6.5.47)
Since M, can also be written as
d’u
M, =EI, e (6.5.48)
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FIGURE 6.21 Moment components

Therefore, by equating the above two equations, we can obtain a
relationship between d’u/dz* and .

d’u _yP
7 “E (L—-2) (6.5.49)
Substituting Eq. (6.5.49) into Eq. (6.5.46) gives
2 L

- 2y _ dy
SEL ), Y2 e +2f Gf(d ) dz  (6.5.50)

The potential energy of the member at buckling is equal to the
negative product of the applied force P and the distance it travels when
the member buckles. In Fig. 6.22a if we can suppose a curvature d°u/dz*
exists between points a and b that are a distance of dz apart, then the
change in angle from point a to point b is (d%u/dz*) dz. If the rest of the
member remains straight, the tip of the cantilever will travel a distance
dA in the x’-z' plane (Fig. 6.22c) by the amount

2

d
dA=(L-z) d—;:dz (6.5.51)
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FIGURE 6.22 Vertical drop of load
The vertical component of this deflection is Figure 6.22b
d*u
dA, = y(dA)='y(L—z)Ez—5dz (6.5.52)

Equation (6.5.52) represents the vertical drop of the centroid of the
cross section as a result of a curvature existing between points 2 and b, If
curvatures exist everywhere along the member (Fig. 6.22c), the total
vertical displacement of the centroid of the tip cross section is

d2u
dz?

L L
Av=f dAv=f y(L=-2)——=dz (6.5.53)
Q (4]

Knowing this vertical displacement, the potential energy of the
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member due to the applied force P is

L d*u
V=—PA,= —PJ Y(L—z)5=dz (6.5.54)
0 dz
In view of Eq. (6.5.49), we can write Eq. (6.5.54) as
P2 L 2
- _1 N2
Vv L s yA(L—z)dz (6.5.55)

Combining Eqs. (6.5.50) and (6.5.55), the total potential energy of the
member at buckling is
1P

M=U+V==
2El

PE k Z 2
EI,,LY(L_Z) dz

L 1 L d}, 2
el — 2 = i
LY(L z) dz-i-zL Gj(dz) dz

1P2 L , L 2
=———Jy2(L—z)“dz+lf G](ﬂ) dz
0 2 0 dZ

2 El,
(6.5.56)

To obtain an approximate value for P by the Rayleigh-Ritz method,
we need to assume a function for y. The assumed function must satisfy
the boundary conditions of

dy

=0 and —

le 0 dz

The first condition states that there is no rotation of the cross section at

the fixed end and the second condition indicates that the St. Venant
torsion GJ{dy/dz) vanishes at the free end.

If we use an assumed function for y, denoted as ¥

=0 (6.5.57)

z=L

y = % 2Lz — 2% (6.5.58)

it can easily be shown that the boundary cenditions in Eq. (6.5.57) are
satisfied. In Eq. (6.5.58), y., is the rotation of the cross section at the
free end (Fig. 6.20).

Substituting the assumed function into Eq. (6.5.56), we have

L 2
M=0+V=-2t0o [ﬁ _z] Ly
2EL b LI 2Lz —z%) | (L—z)*dz

1 L YL 2
+—J.G{—5@L—2n]dz (6.5.59)
2 4y L
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Integrating, we have

. 1P BRI 1 4yt
1'I=U+V=———( ) —GJ(——)
2E1y 105 +2 3L
_ 4PWIL?  2GIvE
=~ JosE AL (6.5.60)

For equilibrium, we must have

_ _ _ d(F 7
6H=6(U+V)=(Z—:V—)6YL
L
8P2y L’ 4Gly,
—( 105EL, 3L )‘5“—0 (6.5.61)

Since &y, is arbitrary and not necessarily zero, the quantity in
parenthesis must vanish. By setting the quantity to zero, F, can be
evaluated as

_ 4.183

PCI' 2
L...

VELGJ (6.5.62)

The exact solution for this problem is given in the book by Timoshenko
and Gere.” It has the value (4.013/L*VEIL GJ. Upon comparison, the
approximate solution overpredicts the critical load by about 4%.

We will now present, as a last example to demonstrate the use of the
Rayleigh—Ritz method, the approximate critical lateral buckling load of a
simply supported I-beam loaded by a concentrated force at midspan.

Example 6.5. Lateral Buckling Load of a Simply Supported I-Beam
Loaded at Midspan

Figure 6.23a shows a simply supported I-beam subjected to a concen-
trated force P acting at the centroid of the midspan cross section. As P is
increased gradually, it will reach a stage at which the deflected shape in
the y-z plane ceases to be stable and lateral buckling occurs, as shown in
Fig. 6.23b. Because of symmetry, we need consider only half of the
beam. Note that at buckling, a twisting moment of Pu, /2 will develop at
the simply supported end of the beam to maintain equilibrium.

soLuTioN: To apply the Rayleigh-Ritz method to obtain the critical
buckling load of the beam, we need to evaluate the strain energy and the
potential energy of the beam at buckling.
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{a) Y

FIGURE 6.23 Lateral buckling of an I-shaped beam

The strain energy of the beam at buckling is given by
1Y rd%un\? 1 J’L (a'y)z
== — +=- — d
u ZJ; Ely(dzz) dz 2], GJ 1z z
1t zf‘!y)z
+= — 6.5.63
2}, B () 6569

The first term in Eq. (6.5.63) represents the strain energy result from
the out-of-plane bending of the cross section during huckling. The second
term represents the strain energy due to St. Venant torsion. The third
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term represents the strain energy due to warping restraint torsion. As
indicated in Chapter 5, for all cross sections except circular sections or
cross sections that are made up of thin-walled elements for which all
elements intersect at a common point, the cross sections will warp. that
is, plane sections will not remain plane as the member is twisted. As a
result of this warping deformation, warping restraint torsion will be
developed in the cross section that is not allowed to warp freely. For the
case of an I-section, the strain energy stored in the member as a result of
warping restraint torsion is due primarily to the coupled bending energy
of the two flanges. The bending energy of the flanges is equal to

L 2 2
Ur=2[% fo E&(%) dz] (6.5.64)

in which /; is the moment of inertia of one flange about the weak axis of
the cross section. The variable x is indicated in Fig. 6.24. The factor two
in front of the square bracket accounts for the fact that there are two
flanges.

From Fig. 6.24, we can write

Ur=— (6.5.65)

FIGURE 6.24 Bending of beam flanges
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Substituting Eq. (6.5.65) into Eq. (6.5.64), we obtain

L hz dz.}, 2
Uf—L E’f(?) (d—zz) dz

1 L dZY 2
-5 L ECw(d—z'z-) dz (6.5.66)
where
Cu= If: (6.5.67)

is the warping constant for the section.

Note that Eq. (6.5.66), which is the third term in Eq. (6.5.63), is not
present in the previous case of narrow rectangular section [see Eq.
(6.5.46)] because warping restraint torsion is negligible for such cross
sections.

Because of symmetry, the strain energy expression of Eq. (6.5.63) can
be written as

el

L2 dzu 2 L2 d}’ 2
[ nl e o)
U J; Ely(dzz) z +J; G iz dz

+f “ec (21 a: (6.5.68)

Here, as in the above example, it is desirable to express the strain
energy of Eq. (6.5.68) in terms of only one variable, y. Referring to Fig.
6.25, we sce that the out-of-plane bending moment M. can be expressed
as

dv
My—_ny-_d—zMz
— I_)(E__z)+d_gf(
HREAY 4z 3 W™ )
=_V_P(£_ )
> 377 (6.5.69)

The second term is dropped because it is of higher order compared to
the first term.

Since M, can also be expressed as
d*u

My =El, (6.5.70)
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FIGURE 6.25 Moment components

therefore, by equating Eq. (6.5.69) with Eq. (6.5.70), we have

d*u —yP (L )
—= -=- 6.5.71
dz* 2EI \2 ( )
Upon substituting Eq. (6.5.71) into Eq. (6.5.68), we have
Li2 ,,2p2 2 172 2
iag (77) @ [ or(E)
U= — (== J—| d
) 4EL \2 z| dz + X G iz z
L2 dZ}, 2
+ E (—-—) .5.72
0 Cu. dzz dZ (6 )

The potential energy of the member is equal to the negative product of
the applied force and the vertical drop of the force. The vertical drop is

given by
L2 L dzu
A,= L y(a—z)( - dzz) dz (6.5.73)

Equation (6.5.73) was attained from Eq. (6.5.53) by considering the
simply supported beam to be fixed at midspan (because of symmetry) and
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loaded at the end by a force of P/2. The minus sign for the term d*u/dz?
accounts for the fact that the quantity d*u/dz* is negative.

Upon substituting Eq. (6.5.71) into Eq. (6.5.73), the potential energy
of the member at buckling can be written as

uszyz L 2
V=—PA =— (——z) d 5.7
A . 2EL \2 z (6.5.74)

Combining Eqs. (6.5.72) and (6.5.74), the total potential energy for
the member at buckling is

LQZZL L2 2
M=U+V= f P(——z)d+f GJ(")d

4EI, dz
42y L2phP L
+ EC“‘( ) dz = | 2EI, (__Z) dz
LQPZyZ(L ) (d?)
——D A dz+fu ci(5L) e
2
+ Ec,,(d ) (6.5.75)
1]

In using the Rayleigh-Ritz method, we need to assume a function for
v. The assumed function must satisfy the boundary conditions of zero
torsion at z =0 (because of symmetry) and zero angle of twist at z = L/2
(because of the support)

d
2 —0 and y|.pp=0 (6.5.76)
dz z=0
If we choose the function
¥ = ¥Ym CO5 % (6.5.77)

where y,, is the rotation of the cross section at midspan (Fig. 6.23b), the
boundary conditions of Eq. {6.5.76) are satisfied.
Substituting Eq. (6.5.77) into Eq. (6.5.75) gives

_ _ _  —p? 4 Z L 2
= V= 2 —— (__ )
U+ 4 . (}f cos? ) 2 z)] dz

L2 2
+GJ L (1'2—”) sinz%dz

2y Xz
+E f fn(-) cos’ —dz 6.5.78
Co RRCY 3 ( )
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By integrating, Eq. (6.5.78) can be simplified to

- - = P2 1 1
O=0+V=- z 3(— —)
v 1L, "™\ T 8
2L m\*L
m(D) G)reen@F) e
+armi(7) (3)rECa(T) (3 (6.5.79)

For equilibrium, the first variation of the total potential energy must
vanish

P? 11
=| - mL3(—+——)
[ 2E5, "\ " 8

a\3/L
+26rm(7) (3)

+2EC, 7., (%)4(%)] 5y =0 (6.5.80)

Since &v,, is arbitrary and not necessarily zero, the quantity in brackets
must vanish. By setting the quantity in brackets equal zero, P, is found
to be

P = 5.464% \XEI,,GJ +f£—2 EI),EC\,) (6.5.81)

Compared with the exact answer given in the book by Timoshenko and
Gere,’ we see that the approximate critical load expressed in Eq. (6.5.81)
is in error by only 0.5%. Here, as in other examples, the approximate
critical load that is abtained this way is always higher than the exact one
because of the stiffening effect imposed on the member by using an
assumed deflection curve.

In summary, in applying the Rayleigh—Ritz method, we are ap-
proximating the true deflected shape of the member by an assumed
deflected shape [Eq. (6.5.7)] with the functions ¢'s satisfying the
kinematic boundary conditions and the constants @;s as unknown
coefficients. The task is to adjust these coefficients such that the true
deflected shape can be best approximated. The best approximated shape
is the one in which the total potential energy of the member is minimized
with respect to each and every unknown coefficient [Eq. (6.5.11)].
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6.6 GALERKIN'S METHOD

In the preceding section, the Rayleigh—Ritz method has been applied to
obitain approximate values of critical loads. A somewhat similar tech-
nique that uses approximate deflected shapes to obtain approximate
critical loads is a result of work done by B. G. Galerkin.® Unlike the
Rayleigh—Ritz method, in which an expression for the total potential
energy is required, Galerkin’s method requires that the differential
equation of equilibrium be known.

For illustration purposes, it has been shown in Section 6.4 that the total
potential energy of a hinged-hinged column will assume a stationary
value if the following condition is satisfied

d*v\/ _duv duy/ _dv
(=50 %) e (£ (%)
L d*y d*v
+L (EIEE'%PEI—Z)CIJ:(SU—O {6.6.1)

Equation (6.6.1) corresponds to Eq. (6.4.46), except that the first three
terms in Eq. (6.4.46) that describe the axial behavior of the column
before buckling are neglected. This is because we are only concerned
here with the buckling behavior of the column.

Assume the deflection function has the form

hi=aprtabat ot ad, =2 af (6.6.2)
in which the ¢’s are independent continuous functions satisfying both the
kinematic and natural boundary conditions of the member and a;’s are
undetermined coefficients.

Substituting the assumed deflection function (6.6.2) into Eq. (6.6.1),
we obtain

Ly d'w  _d*o _
J(; (EIF+PEE)¢’“5”_O {6.6.3)

The first two terms of Eq. (6.6.1) vanish because the assumed
deflection function ¥ satisfies the natural boundary conditions of zero
moments at the ends. That is, the conditions of

(d*0/dx®)|s_p. = (d*0/dx*)|;0=0

are satisfied.
Equation (6.6.3) can be further simplified if we denote an operator O
as
d d*

Q=El 5+ P A

(6.6.4)
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and recognize that

55 = 5(i aicpi) =§] 50, (6.6.5)

i=1

Thus, using Egs. (6.6.4) and (6.6.5), Eq. (6.6.3) can be written as

LQ(ﬂ) Z $iba; dx =0 (6.6.6)
0 =1

Since all the ¢,’s are independent of one another, the only way that
Eq. (6.6.6) can be satisfied is when each and every term vanishes
individually, that is

L
f O(0)¢,0a, dx =0, i=1,2,...,n (6.6.7)
0

Since &a; are arbitrary, we must have

fLQ(a)qb,- dx=0, i=1,2,...,n (6.6.8)
0

Equation (6.6.8) is called the Galerkin’s Integral.

If n terms are used in the deflection function [Eq. (6.6.2)], Eq. (6.6.8)
represents n simultaneous equations. For an eigenvalue problem, the
approximate critical load can be obtained by setting the determinant of
the coefficient matrix of the n equations equal to zero.

Although Eq. (6.6.8) has been derived using the differential equation
for a hinged-hinged column, the same expression can be used for
columns with other end conditions. This is because the differential
equation
dv _d*v
E'FPP:Q(U):O (6.6.9)
is valid for columns with other end conditions (fixed, guided) other than
hinged (see Section 2.3). The only restriction is that the assumed
deflected shape must conform to the kinematic and natural boundary
conditions of the specific problem.

Galerkin’s method can also be used to evaluate approximate lateral
buckling loads for beams. For example, for a simply supported beam of
narrow rectangular cross section under uniform moment, the differential
equation of equilibrium is

EI

dy Ld
d—24+ kzd—zz=0 (6.6.10)
where
2 M:

~ GIEI,
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Thus, by redefining the operator O as

da° , d2
Q= 7tk s

Eq. (6.6.8) can be used to obtain approximate value for the critical
moment M, .

The following examples illustrate the use of Galerkin’s method to
perform approximate buckling analyses.

(6.6.11)

Example 6.6. Buckling Load of a Hinged-Fixed Column
In this example, the approximate buckling load of a hinged-fixed column
as shown in Fig. 6.26a will be determined using Galerkin’s method.

soLuTioN: The first step is to assume a defiection function for the buckled
configuration of the column that satisfies both the kinematic and natural
boundary conditions of the member, that is, the conditions

dy

= —_y = - = 6 .12
0) y‘x—L 0, d_x el 0 ( 6 )

d%y
mo=0, &2
yl Q irz =0

must be satisfied.
By using the deflected shape of a hinged-fixed beam under uniform
distributed load (Fig. 6.26b) to approximate the buckled shape of the

FIGURE 6.26 Critical load of a hinged-fixed column by Galerkin's method

X

X
P
L L
——*#Z— v L
P

{a) {b)
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column
j=a(Ll* —3Lx* + 2x*% (6.6.13)
it can easily be shown that the conditions expressed in Eq. (6.6.12) are
satisfied.
Substituting the assumed deflection curve of Eq. (6.6.13) into Eq.
(6.6.8) with n=1, 0 =7, ¢ =L’ —3Lx* + 2x* and

d* d*
Q=L pa+ Py

gives
L

L - .
f a[48EI + P(—18Lx + 24x)][xL? — 3Lx + 2x"| dx = 0 (6.6.14)
0

By integrating, Eq. (6.6.14) can be reduced to

36EIL° 12PL7
— =0 .6.
a[ 5 35 ] {6.6.15)
from which
P.= 21% (6.6.16)

which, when compared with the exact solution of 20.2EI/L* the
approximate critical load is in error by only 4%.

Example 6.7. Lateral Buckling Load of a Simply Supported Rectangular
Beam under Uniform Bending Moment

To further demonstrate the use of Galerkin’s method, the approximate
M,; for the simply supported rectangular beam as shown in Fig. 6.11 will
be determined.

soLuTioN: The differential equation for this beam is, from Eq. (6.6.10),

d*y d*y
— LR L .
27 k 12 0 (6.6.17)
where
2_ Mz
GJE],
The boundary conditions are
d*y d*y
x=0" Yl|x= =0: ) =— = 6.6.
Y[ 0 Yl L dzz =0 dzz oL 0 ( 18)
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The first two conditions are kinematic boundary conditions that state that
the angle of twist at the ends are zero. The last two conditions are natural
boundary conditions that state that the cross sections at the ends are free
to warp.

By using the polynomial solution of the defiected shape of a simply
supported beam under uniform distributed load

y=a(L’z —2Lz*+z%) (6.6.19)

to approximate the angle of twist y, it can easily be shown that the
conditions expressed in Eq. (6.6.18) are satisfied.

Substituting the assumed function for the angle of twist [Eq. (6.6.19)]
into Eq. (6.6.8) with n=1, o =%, ¢ =L2—2Lz°+z* and Q =(d%/
dz*) + k*(d*/dz?) gives

L
f a[24 + k*(—12Lz + 122%)|[L’z — 2L2* + z"]dz =0 {6.6.20)
0

which, when simplified, becomes

gfl: 5 __];z 2 7:| _
a[s L 35k L'1=0 (6.6.21)
from which
Q.
kK= LSZS (6.6.22)

And since k* = M%/GJEIL, we have
3.1
M, =kVGIEL = —Lff VGIEIL (6.6.23)

which, when compared to the exact solution of M, =mx/LVGJEIL, the
approximate solution is in error by less than 0.1%.

Before leaving the subject, it should be mentioned that if the true
deflection curves such as
(x sin kx )
y=a o T

L kLcoskL
for the first problem, and

y =asin kz

for the second problem had been used, we would have obtained the exact
critical loads.

In the above examples we used approximate rather than true deflection
curves to demonstrate that the critical loads so obtained will be larger
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than the exact ones. For more complicated problems for which the true
deflection curves are not known, the use of Galerkin’s method in
conjunction with an approximate deflection curve will furnish an upper
bound value for the critical load.

In comparing the Rayleigh—Ritz method with Galerkin’s method, two
important differences can be identified. First, the Rayleigh—Ritz method
deals with the total potential energy of the system, whereas Galerkin’s
method deals with the differential equation of equilibrium of the system.
Second, the assumed deflection curve used in the Rayleipgh—Ritz method
need satisfy only the kinematic boundary conditions, whereas the
assumed deflection curve used in Galerkin’s method must satisfy both the
geometric and natural boundary conditions. The nature of the problem
will decide which method will be more appropriate to use. For example,
if it is easier to evaluate the expression for the total potential energy
function and to find an approximate deflection curve that satisfies only
the kinematic boundary conditions, the Rayleiph—Ritz method will be
simpler to use. On the other hand, if it is easier to set up the differential
equations of equilibrium and to find an approximate deflection curve that
satisfies both the kinematic and natural boundary conditions, Galerkin’s
method will be more appropriate. Regardless of which method one uses,
the approximate value for the critical load obtained will always be larger
than the true critical load.

6.7 NEWMARK'S METHOD

Newmark’s method’ is a numerical iterative procedure that involves the
use of successive approximations to obtain solutions when the load on (or
deflection of) the member is increased in steps. Unlike the Rayleigh—Ritz
and Galerkin’s methods, in which the assumed deflection curve is
expressed as a continuous function, Newmark’s method divides.the
member into several equal segments and a numerical value of initial
deflection is assumed for each division point along the member. Each of
the division points is referred to as a station. Since Newmark's method is
valid for both the elastic perfect member and the inelastic imperfect
member, it follows that the moment-curvature relationship of an inelastic
member must be either known beforehand or derived first before one can
proceed with the numerical procedure. If the member remains fully
elastic, the moment-curvature relationship has the simple form

M=EID (6.7.1)

In the determination of the critical load using the Newmark’s method,
numerical values for the deflections at stations xq, X3, X2, ..., X1, X,
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FIGURE 6.27 Newmark’s method

along the member are first assumed. They are denoted as y,, i,
Y25+« Yu—1: Yo In Fig. 6.27a, where a hinged-hinged column is shown
for illustration. The bending moments at stations 0 to # are computed for
each division point or station from the condition of equilibrium (Fig.
6.27b). For an elastic member, the curvatures at each station is then
computed by using the elastic moment-curvature relationship of Eg.
(6.7.1) (Fig. 6.27c). Knowing the curvatures at all the stations, the slopes
and deflections of the member can be determined by the corjugate beam
method.

Since the moment diagram is usually irregular in nature, the conjugate
beam loading, which uses the M/EI diagram as the distributed loadings,
will also be irregular. This is particularly the case if the flexural rigidity
EI changes along the member. To simplify the computation, it is
convenient to express the distributed loading by equivalent concentrated
loads acting at the stations. The formulas for computing the equivalent
concentrated loads for a linear and parabolic distributions of loadings are
shown in Fig. 6.28a—d. Figure 6.28a gives the formulas for the equivalent
concentrated loads at stations x;_; and x; for a linearly varying distributed
load between the two stations. These formulas should be used if there is a
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FIGURE 6.28 Equivalent nodal force

jump in magnitude in the M/EI diagram at either of the stations. Figure
6.28b gives the formula for the equivalent concentrated loads for stations
x;_y, X;, and x;,,. This formula is for the case in which the actual loading
is continuous over the station x;. Figure 6.28c gives the formulas for the
equivalent concentrated loads for stations x;,_; and x; for a parabolic
varying distributed load. Note that station x;,; in the formula is fictitious
because three stations are needed to define a parabola. In using the
formulas, the value r;,, at station x;,, must be known. The value r,,; can
be taken as equal to r,_; if a plane of symmetry can be established at
station x;. Otherwise, the value of r;,, can be taken as zero. The formulas
in Fig. 6.28c are for the cases if station x;_, or x; is an endpoint or if there
is a jump in the M/EI diagram at either of the stations. Figure 6.28d
gives the formula for the equivalent concentrated loads for stations x;_;,
x;, and x;., if the distributed loading is parabolic over the three stations
and is continuous over station x,.

In many cases, the actual distribution of loading is neither linear nor
parabolic. Nevertheless, the parabolic load distributions can still be used
to approximate the actual loading for most practical purposes.
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Having replaced the actual distributed loading, namely, the M/E[
diagram, by equivalent concentrated loads at the stations of the conjug-
ate beam (Fig. 6.27d), the slope of the real member can then be obtained
as the shear force of the conjugate beam (Fig. 6.27¢) and the defiection
as the moment of the conjugate beam (Fig. 6.27f). Since equivalent
concentrated loads are used, rather than the actual distributed load, the
slopes evaluated represent only the average slopes of two adjacent
stations.

The deflections thus obtained contain P as an unknown (see the
example problem). Thus, by equating these deflections to the assumed
deflections at each station, numerical values for P can be calculated. The
lowest value of P obtained this way will represent a lower bound to the
critical load, and the largest value of P will represent an upper bound to
the critical load. Consequently, by using Newmark’s method, both the
upper and lower bound solutions to the actual critical load are obtained.
This represents an obvious advantage over the Rayleigh-Ritz or
Galerkin’s method, in which only an upper bound solution can be
obtained. To estimate the critical load, the average value of the
calculated deflections at all stations is equated to the average value of the
assumed deflections; thus

E (ynssumcd)f'

=0

Pcr= (y:usumed)nﬂ — (672)

(y afculat L\)- )
caiculated favg ‘E() (yculculutcd)i
i=

A better approximation of the critical load can be obtained by using
the calculated deflections as the new assumed deflections and repeat the
same procedure outlined above. The process can be repeated as many
times as needed until the lower and upper bounds for P, are not too far
apart.

Example 6.8. Critical Load of a Cantilever Column Loaded at the Tip
and at Midheight

soLuTion: Table 6.1 shows Newmark’s numerical procedure for the
determination of the critical load of the column. The column is divided
into 10 stations. The initial deflections of the stations are assumed to
follow the function

ax
assumed — 6( - _')
Y. a 1 —cos 2L

The moments M are then obtained from the deflections by considera-
tion of equilibrium. For example, the moment at Station 9 is obtained
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from
4 Pé

My = P(yo— yo) = P(100 - 84.4) - = 15.6 7

and the moment at Station 4 is obtained from

My=P(y10—ya) + P(ys— ys)

5 )
= P(100 ~ 19.1) 75+ P(29.3-19.1) 1o
P
=911

The curvature ¢ can be obtained from the moment by using the elastic
moment-curvature relationship given in Eq. (6.7.1). The values of the
curvatures are then used in conjunction with Fig. 6.28 to calculate the
equivalent concentrated loads R at the stations. For instance, the
equivalent concentrated load at Station 9 is (using Fig. 6.28d)

L/10 Pé PSL
Ry ==1-[30.9+10(15.6) + 0] oo = 1.56 7
and at Station 4
L/10 Po PSL
R, _Ti_ [108 +10(91.1) + 70.7] m = 908@

The average slope 6 of the real column between two stations is
obtained as the shear of the conjugate beam and the deflection y .icuiatea
of the real column as the moment of the conjugate beam (Fig. 6.29).

By taking the ratio of ¥ ;umea 10 Yearewimea fOr 2ll the stations, a bound
for the critical load can be obtained: :

El Er
191 ==<P . =2.07—
9 LZ cr 2 Iz

Using Eq. (6.7.2), an approximate value for the critical load is
obtained as 2.02(EI/L?). Compare this with the exact value of 2.067El/
L2, the error is about 2.3%.

To improve the accuracy of the solution, we will now start a second
cycle of calculation. The assumed deflection (¥,oume) fOr the second
cycle is now taken as proportional to the calculated deflection (¥ acutatea)
of the first cycle. To adjust the common factor, a factor of 100/48.4 is
used to mu[tiply every term of (ycnlculatﬂl) in CYCIE 1 to obtain (ynssumcd) in
Cycle 2. This factor is used so that Station 10 will have a deflection equal
to 6. The results of the second cycle indicates that a better bound for P
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FIGURE 6.29 Critical load by Newmark’s method

is obtained

E]

12

with an estimated P.. [Eq. (6.7.2)] of 2.06EF/L?, which is only 0.3% in
error.

ET
2.04 Iz =P =207

Newmark’s numerical procedure to obtain critical loads for elastic
columns can be extended to the determination of maximum load-carrying
capacity of inelastic beam-columns. The procedure for the analysis of
inelastic beam-column is similar to that for the analysis of elastic column.
However, instead of using the conjugate beam method to determine the
average slopes and deflections of the stations, we will now present an
alternative method to obtain these quantities. If we denote 8; and y; as
the average slope and deflection of station i, respectively, their values can
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be obtained by numerically integrating the curvature and slope.

i AZ i
9‘.=§;( {) Ax=-3 O Ax, i=0,1,2,...,n (6.7.3)
iop \AXT/ k=0

y,.=2(-‘}i) Ax=2 6, Ax, i=0,1,2,...,n (6.7.4)
ioo \MAx/ k=0

In these formulas, Ax is the interval between the stations. The minus sign
in Eq. (6.7.3) indicates that the curvature @ is related to d?y/dx®
negatively as a result of the manner the coordinate axes are set up. In
writing Eq. (6.7.4), it is tacitly assumed that the initial slope 8, is equal
to zero. If 6, is not zero, the deflections calculated from Eq. (6.7.4) must
be adjusted. The adjustment can be made by realizing that if &, is not
equal to zero, the deflections calculated in Eq. (6.7.4) will differ from the
corrected deflections by a proportionate amount equal to (i/n)y, (Fig.
6.30). Thus the corrected deflections can be written as

Jie=Yi— (i)yn (6.7.5)

We should mention that the conjugate beam method used in the
preceding example for an elastic member works equally well for an
inelastic member. In other words, instead of using Eqgs. (6.7.3) to (6.7.5),
one can construct a conjugate beam with the curvature diagram as the
distributed loadings. The values of the shear and moment of this
conjugate beam at the { station will represent the values of & and y, of the
real member, respectively. The use of Egs. (6.7.3} and (6.7.4) simply

i FIGURE 6.30 Correction to deflec-
n-n tion

e v
“zero Yi
slope

Y
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» ' |2,.,

X 11*1

i ox ox ]‘

FIGURE 6.31 Equivalent con-
centrated force for constant R =@ AX
curvature b

means that the curvature @, is assumed constant over the i station, as
shown in Fig. 6.31, whereas by using the conjugate beam method, one
can assume a linear or parabolic variation of curvature across the station
{Fig. 6.28).

In using Newmark’s method to analyze an inelastic beam-column, the
moment-curvature-thrust (M-®-P) relationship must be known in ad-
vance. The moment-curvature-thrust relationship for a rectangular cross
section has been developed analytically in detail in Chapter 3. For other
cross sections, the moment-curvature-thrust relationship are more com-
plicated and are usually obtained numerically®® with the aid of a
computer. With a known moment-curvature-thrust relationship, the steps
for analyzing an inelastic beam-column by Newmark’s method can be
summarized as follows:

1. Divide the member into n segments.

2. Assume a numerical value for the initial deflection at each station
(yussumcd)h i= 0: 1: I (2

3. Compute the bending moment A; at each station by considering
equilibrium.

4. Using the moment-curvature-thrust relationship, compute the curva-

ture &; at each station.

Use Eq. (6.7.3) to evaluate the average slope 6;.

Use Eq. (6.7.4) to evaluate the deflection y; of each station.

Adjust the deflections calculated in Step 6 by Eq. (6.7.5).

Compare the deflections calculated in Step 7 to the assumed deflec-

tions in Step 2.

If the deflections of Step 7 and Step 2 are comparable, a solution is

obtained. If not, use the deflections of Step 7 as the assumed

deflections and repeat Steps 3 through 8 until convergence.

o

The following example illustrates Newmark’s numerical procedure for the
analysis of an inelastic beam-column.
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Example 6.9. Inelastic Beam-Column Analysis by Newmark’s Method

Figure 6.32 shows a simply supported member of rectangular cross
section subjected to two end moments M, and 0.5M, and an axial force P
equal to 0.5F,, where F, is the yield load of the member. Now we want to
find the maximum end moment M that will cause failure of the member.

soLutioN: Before proceeding with the analysis, it is convenient to
determine the following quantities from the given cross-sectional and
material properties (Fig. 6.32)

Py=Ao,=bdo,

2

My = SU’,, = ? Ty

Thus M, = (d/6)P, = (0.06L/6)P,(F,L/100)
M, FL  Lbdo, 12Lg, 1

=1 = = =—
Y EI 100E1 b_d3) 100Ed> 30L
12

1A% L
(z) P =150

100E (

FIGURE 6.32 Member under combined moment and axial thrust

MD
el s

T
|

Gross-Section Geometry: d=0.06L

Material Property: Cl'!r =0.001E
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The moment-curvature-thrust relationship used is from Eqgs. (3.9.30a-
c) with p=P/P,=0.5

m=, $¢=<0.5
1
=1.5—+/— 05s¢=2.0
m=1.5 \/2‘1) ¢
—1125—L =20
m= 207
from which
=m, m=0.5
th= ! 0.5=m=1.0
21.5—m)?

1

As a start, assume M, =0.4M,. Table 6.2a shows all the necessary steps
in determining the equilibrium configuration of the member subjected to
applied axial force combined with end moments.

The member is divided into four equal segments. The primary moment
(moment caused by the end moments) at the stations are then evaluated.

A deflected shape of the member is then assumed. For this problem,
the numerical values of the stations are assumed to be that of the
deflected shape of a beam under the action of the end moments only.

With these assumed deflection values, the secondary or Py moment
(moment caused by the axial force acting through the deflection of the
member relative to its chord) of the stations can be calculated by
multiplying the values of the assumed deflection by the axial force of
0.3P,.

Tlie next step is simply a change of multiplier from P,L to M, by
making use of the relationship M, = P, L/100.

The total moment can then be obtained by adding the values of
primary moment to that of the secondary moment.

Using the moment-curvature-thrust relationship, the curvatures at the
stations can be evaluated.

Using Eq. (6.7.3), the average slopes between two adjacent stations
can be obtained by numerically integrating the curvatures.

Using Eq. (6.7.4), the deflections at the stations can be calculated by
numerically integrating the slopes.

As explained previously, the values of these deflections must be
adjusted due to the assumption of zero slope at Station 0. The adjusted
deflections can be evaluated using Eg. (6.7.5) and are reported as
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Table 6.2a Determination of Equilibrium Configuration by Newmark's Method

(M, = 0.4M,)

M, =0.4M,

LY
M =0.2M,

0.5F

{
N T

boLia

L/4 !

~
A

0.5P,,#— %

Station

Cominon
Factor

Primary
Moment
My

0.4

0.35

0.30

0.25

My

Cycle 1

Y assumed

Secondary
Moment
P y assumed

Change
Multiplier

Total Moment
Mﬂ + Pyassﬁmed
Curvatute
a
Average Slope
8;
Defiection
¥
Corrected
Defiection
yl:
Change
Multiplier

¥ caleulatcd

0

0

0.4

0.4

0.00099

0.000495

0,0495

0.4

0.4

—0.4

—-0.4

0.555

0.0012

0.00125

0.000625

0.0625

0.363

0.363

-0.8

-1.2

0.710

0.0015

0.600885

0.000443

0.0443

0.294

0.254

—1.163

—2.363

0.501

0.001

—1.458

0.2

0.2

-3.81%

PL

X

X

]

——— —— —

&l Rl B
S
&

“Corrected Deflection” in Table 6.2a. As shown in the table, the
corrected deflection values have a common factor of (L/4)°®,. To
correlate this calculated deflection with the assumed deflection, a change
in multiplier is necessary. This can be done by using the relationship
(L/4)y*®, = L/480. Once the multiplier is changed, one can make a direct

comparison between the assumned and calculated deflections.
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Table 6.2a Determination of Equilibrium Configuration by Newmark's Method
(M, = 0.4M,) (continued)

1

M, =0.4M, 5Ma=0.2M,,
i )
D.5Py L - g i D.5Py-~—-— X
| w8 T L4, Lia |
I 7 T T 1
‘l'
Common
Station 0 1 2 3 4 Factor
Cycle 2
¥ assumedt 0 0.0012 0.0015 0.001 0 L
Secondary
Moment 0 0.0006 0.60075 0.0005 0 F.L
Pyassumcd
Change
Multiplier 0 0.06 0.075 0.05 0 M,
Total Moment 0.4 0.41 0.375 0.30 0.2 M,
MU + Pymuiuml:l.l
Curvature
€, 0.4 0.41 0,375 0.30 0.2 @,
Average Slope ( é) @
6, -0.4 ~0.81 —1.185 —1.485 4]
Deflection (g )2 »
¥ 0 0.4 -1.21 —2.395 —3.88 4 ¥
Change
Multiplier 0 0.0012 0.0015 0.0011 0 L
Yealculated

Since ¥ peuinied ™ Y assumed» S0MULon has converged.

If the calculated deflection is comparable to the assumed deflection, an
equilibrium configuration of the member is said to have found. If the
calculated deflection is not comparable to the assumed deflection, the
calculated deflection is used as the assumed deflection and the calculation
is repeated.

A second cycle of calculation is shown in Table 6.2a. As can be seen,
convergence is achieved at the second cycle of calculation. Thus, the
values of the deflection at the end of the second cycle will represent the
equilibrium configuration of the member corresponding to an axial force
of 0.5F, and M,=0.4M,.
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Table 6.2b Determination of Equilibrium Configuration by Newmark’'s Method
(M, = 0.90M,)

fuao.gmy 3&;0.451“!
DISPY (\ u’y}n\———ﬂﬂ /,} D.SPY“—"'X
;L_ L4 | L/4 | L4 | L |
H ] T 1
4
Common

Station 0 1 2 3 4 Faoctor
Primary
Moment .90 0.788 0,675 0.563 0.45 M,
M,
Cycle 1
¥ nssumed V] 0.0022 0.0028 0.002 0 L
Secondary

Moment 0 0.0011 0.0014 0.001 0 P,L

Pynasumeu
Change

Multiplier 0 0.11 0.14 0.1 g M,
Total Moment 0.50 0.898 .815 0.663 .45 My

MO + Pynsaumcd
Curvature

P, 1.389 1.380 1.066 1.714 0.45 qu
Average Slope L o

8, —1.389 —2.769 —3.835 —4.549 a0y
Deflection (E)lq)

¥ h} —1.389 —4.158 —7.993 -12.54 4; Y
Corrected 12

Deflection 0 1.747 2.113 1.414 0 (I) b,

Fic
Change

Multiplier Y 0.0{36 0.0044 0.0029 0 L

yulculmed

For any given loading, an equilibrium configuration of the member can
be found using the procedure outlined above so long as the member
remains stable. Therefore, by increasing the magnitude of end moments
from M,=0.4M, to M;=0.5M,, one can find a new equilibrium
configuration of the member. Hence, by increasing the value of M, and
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Table 6.2b Determination of Equilibrium Configuration by Newmark's Method
(M, =0.90M,) (continued)

Y.
M, =0.9M, 5 T."_U 45M,
J ——
O‘SPY S T D'EPY X
3 L4 | Lra | L/4 L4 i
' 1 7 !
y
Common
Station 0 1 2 3 4 Factor
Cycle 2
¥ assumed 0 0.0036 0.0044 0.0029 0 L
Secondary
Moment 0 0.0018 0.0022 0.00145 0 FL
PYnssumrd
Change
Multiplicr 0 0.18 0.22 0.145 0 M,
Total Moment 0.9 0.968 0.885 0.708 0.450 M,
MO + Pynuumed
Curvature
@, 1.389 1.767 1.366 0.797 0.45 b,
Avcrage Slope (£)2¢
6; -1.38% —3.156 —4.522 —5.319 4; "
Deflection (E)ZLD
¥ 0 —1.389 —4.545 —9.067 —14.386 4 ¥
Corrected I\
Deflection 0 2.208 2.648 1.723 0 (X) b,
Yi
Change
Multiplier 0 0.0046° 0.0055 0.0036 0 L
¥ cateulmed

SInCe ¥ gicutated P Yassemed» SCMtion diverges,

repeating the procedure, a nondimensional load-deflection (Mp/M, — y./
L} curve can be plotted. Such a curve is shown in Fig. 6.33. The curve is
nonlinear for My/M, > 0.5 because the effects of geometrical and material
nonlinearities become significant in the analysis. The effect of geometrical
nonlinearity is accounted for by introducing the secondary (Py) moment
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Yo/l

FIGURE 6.33 Load-deformation behavior of an elastic beam-column

in the calculation and the ecffect of material nonlinearity is accounted for
by using the nonlinear M-FP-® relationship.

As seen from the figure, as the load (M,/M,) increases, the deflection
(y2/L) increases. However, the rate of increase in deflection is not
directly proportioned to the rate of increase in load for My/M, >0.5. The
rate of increase in deflection exceeds that of the load when My/M,>0.5
and at M,/M,>0.8, a slight increase in load will bring about a
tremendous increase in deformation. The peak point of the curve, that is,
MO/MY=0.84, represents the maximum load the member can carry.
Thus, for the given member subjected to an axial force of 0.5F,, the
maximum end moments that the member can carry are 0.84)M, and
0.42M, at the left and right ends, respectively.

If a value greater than M;=0.84M, is used in the calculation, the
values of the deflection will diverge rather than converge, indicating that
the assigned value of M, exceeds the load-carrying capacity of the
member. To illustrate this, Newmark’s method is used in an attempt to
establish the equilibrium configuration of the member for M, = 0.90M,.
The detailed calculations are shown in Table 6.2b. As can be seen, the
values of the deflections diverge in subsequent cycles of calculations.

Before leaving the subject, it is important to note that Newmark’s
method can only be used to generate the ascending branch of the
load-deflection curve. In other words, this method is applicable only for
tracing the load-deflection behavior of the member from the start of
loading to the peak point of the curve. If we are also interested in the
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descending branch of the curve, that is, the load-deflection behavior of
the member beyond the peak point, Newmark’s method cannot be used
directly. Instead, another numerical procedure known as the numerical
integration procedure should be used. This procedure is discussed in the
following section.

6.8 NUMERICAL INTEGRATION PROCEDURE

In the step-by-step numerical integration procedure, the member is
divided into segments, and, just as in Newmark's method, the moment-
curvature-thrust relationship must be known or calculated in advance.
However, unlike Newmark’s method, in which an assumed deflection is
assigned at each and every station, only the deflection of the first station
is specified in the step-by-step numerical integration procedure. The
deflections at subsequent stations are calculated from station to station in
a systematic, forward-marching manner (which we will describe in a
moment). Another difference between Newmark’s method and the
step-by-step numerical integration procedure is that in the former the
external applied forces are kept constant during the iteration and the
equilibrium configuration of the member that corresponds to these
applied forces is sought. In the step-by-step numerical integration
procedure, the assumed deflection of the first station is kept constant
during the iteration and the forces that correspond to that deflection are
sought. Newmark’'s method is essentially a load control iterative proce-
dure, while the step-by-step numerical integration procedure is a
displacemnent control iteration procedure.

Consider Fig. 6.34, in which a pinned-pinned member is shown. The
member is subjected to an axial force P and end moments M, and fM,. B
is a constant, representing the ratio of the moment applied at the right
end to the moment applied at the left end of the member. The solution
procedure is outlined as follows.

1. Specify a deflection y, at Station 1 and assume a value for M.

2. Calculate the secondary moment at Station 1 by multiplying y, by the
axial force P.

3. Calculate the total moment at Station 1 by adding the secondary
moment to the primary moment.

4, Obtain the curvature ¢, of Station 1 from the moment-curvature-
thrust relationship.

5. Calculate the deflection of Station 2, y;, from

A
Y= (sz) (Ax)?+ 2y, — 0

= —@,(Ax)*+ 2y, (6.8.1)
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Station 0 1 [- I Fooe e n

FIGURE 6.34 Step-by-step procedure

Equation {6.8.1) is the second-order central difference equation. Ax is
the length of the segment.

6. Knowing y,, the secondary moment at Station 2 can be obtained by
multiplying y; by P.

7. The total moment is obtained by adding the secondary moment to the
primary moment.

8. The curvature @, at Station 2 can then be obtained from the
moment-curvature-thrust relationship.

9. The deflection at Section 3 is obtained from the second-order central
difference equation

A%y
¥3= (XI_E)Z(AI)Z +2y.—n
= —0,{Ax)’ + 2y, — 3 (6.8.2)

Steps 6 to 9 are repeated for successive stations until the end of the
member is reached. If the displacement y, at the end of the member
differs from zero, a correction is made to M, by

1
M,. = (1 + —%)MO (6.8.3)

where n is the number of segments in the model. The process is then
repeated starting from Step 2 until y, becomes zero.
Equation (6.8.3) was developed on the postulation that

error in M, errorin y,
M, B4

(6.8.4)

that is
Mm: - MD _ yn_/”
M, Y1
Solving for M, in Eq. (6.8.5) gives Eq. (6.8.3).

To illustrate the procedure, the problem shown in Fig. 6.32 is
reworked using the step-by-step numerical integration procedure. The

(6.8.5)
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Table 6.3a Determination of Equilibrium Configuration by the Step-by-Step
Numerical Integration Procedure (y, = 0.0012L)

1 a
= M =5 M
,Mu aMy 270 2\ ¥
0.5P £ ) . . + s} 0.5P X
e <
N
| | l |
Y
Common
Station 0 1 2 3 4 Factor
Cycle 1
Assumed
Primary
Moment 0.38 0.333 0.285 0.238 0.19 M,
My
Yo Y1 Y2 i) Ya
Deflection 0 0.0012 0.00158 0.0012 0.0002 L
(Specified) (Calculated)
Secondary
Moment 0.0006 0.00079 0.0006 P_,L
Py
Change
Multiplier 0.06 0.079 0.06 My
Total Moment 0.393 0.364 0,298 M,
M,+Py
Curvature
D, 0.353 0.364 0.298 D,

detailed calculations are shown in Table 6.3a. The solution procedure
begins with a value of y, equal to 0.0012L and an assumed moment M,
equal to 0.38M,. After that, Steps 2 through 5 are followed to calculate
¥z. Steps 6 through 9 are then followed to calculate y,, and, finally, by
repeating Steps 6 to 9, y, can be calculated. The calculated value of y, is
0.0002L, which differs from the expected value of zero. Therefore, a
second cycle of calculation is necessary. This time the modified value for
M, is calculated from Eq. (6.8.3) to be 0.4M,. By following through the
same procedure, the value of y, is found to be 0.00003L, which, for
practical purposes, can be taken as zero, and so the solution process is
stopped.

1t is important to mention here that unlike Newmark’s method, in
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Table 6.3a (continued)

Mo aM, o 2\""'5«
0.5f, —— { == 0.5B-——x
[ us s | L Lisa |
{ | |
y .
Common
Station 0 1 2 3 4 Factor
Cycle 2
Assumed
Primary
Moment 0.40 0.35 0.30 0.25 .20 M,
My
Yo Y1 Ya Y3 Ya
Deflection g 0.0012 0.00155 0.00111 (.00003 L
{Specified) {Calculated)
Secondary
Moment 0.0006 0.000773 (.000557 F.L
Py
Change
Multiplier 0.06 0.0773 0.0557 M,
Total Moment 0.41 0.377 0.306 M,
M, + By
Curvature
P, .41 0.377 0.306 be

Since y, =0, therefore siop.

which the solution process proceeds from row to row, the solution
process for the step-by-step numerical integration procedure proceeds
from column to column in the tabulated form. In addition, the numerical
integration procedure can be used to generate the descending branch of
the load-deflection curve. This can be achieved by assuming a somewhat
larger starting value for y,. Table 6.3b shows one such calculation and the
complete load-deflection curve, including the descending branch, is
plotted in Fig. 6.33 (dotted line). Points a, b, and ¢ on the curve
correspond to the values calculated in Table 6.2a and 6.3a,b, respec-
tively. Note that for the ascending branch, the Newmark’s and the
numerical integration methods give almost identical results.
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Table 6.3b Determination of Equilibrium Configuration by the Step-by-Step
Numerical Integration Procedure (), = 0.0071)

Mg G M, M, z\My
- ‘ e
NS e e
| w4 1 Ul Ua (L4 |
'l | f i ]
Y
. Commaon
Station 0 1 2 3 4 Factor
Cycle 1
Assumed
Primary
Moment 0.81 0.70% 0.608 0.507 0.405 M,
My
¥n gt Yz Ya Ya
Deﬂ—ec.tion 0 0.007 0.00827 0.00457 —0.60021 L
(Specified) (Calculated)
Secondary
Moment 0.6035 0.00413 0.0024% P.L
Py
Change
Multiplier 0.35 0.413 0.249 M,
Tatal Moment 1.059 1.021 0.756 M,
My+ Py
Curvature
D, 2,752 2.193 0.903 D,

6.9 SUMMARY

For compression members whose elastic buckling loads are difficult to
obtain by analytical means, approximate methods can be used to estimate
the. critical loads. In this chapter, we introduced two energy methods
(Rayleigh—Ritz and Galerkin's) and two numerical methods (Newmark’s
and numerical integration). In the energy methods, we investigated the
energy of the member, in particular, formulating the total potential
energy function. By using the technique of variational calculus, we
showed that the equilibrium conditions of the member can be
established.

The Rayleigh-Ritz method is the first energy method that deals
directly with the total potential energy function. By assuming a deflected
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Table 6.3b (continued)

1 a
M- a M!'r 2M = ?\My
0.5P (‘7},‘ t + } T 0.5F'y—-—x
i| l./4 | L/4 % Li4 JT L/4 |
Y
Common
Station 0 1 2 3 4 Factor
Cycle 2
Assumed
Primary
Moinent 0.804 0.704 0.603 0.503 0.402 M,
M,
Yo b4 ¥a Y3 Y4
Deflection 0 0.007 0.00847 0.00523 0.00006 L
(Specified} (Calculated)
Secondary
Moment 0.0035 0.00424 0.00262 L
Py
Change
Multiplier 0.35 0.424 0.262 My
Total Moment 1.054 1.027 0.765 My
M, + Py
Curvature
D, 2.654 2,259 0.926 b,

Since p, =0, therefore stop.

shape that satisfies the kinematic boundary conditions of the member, the
total potential energy function is reduced from a functional to a function.
As a result, ordinary calculus, rather than variational calculus, is
sufficient to carry out the energy minimization process. The final product
of this procedure is the elastic critical load.

Galerkin’s method, on the other hand, is derived from energy
formulation, but deals with the differential equation of equilibrium in the
solution procedure. By assuming a deflected shape that satisfies both the
kinematic and natural boundary conditions of the member, the elastic
critical load can be obtained directly from the Galerkin’s integral [Eq.
(6.6.8)].

The approximate critical loads evaluated using the Rayleigh-Ritz or
Galerkin’s method are always higher than the true critical loads, unless
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the assumed deflection is the true deflection of the member, in which case
the energy method will lead to the true buckling load of the problem. In
general, the approximate critical loads represent upper bound solutions
to the true critical loads.

An alternative procedure that furnishes both an upper and a lower
bound to the true critical load was also presented: Newmark’s method.
Here the member is divided into segments and numerical values for the
deflections at the stations are assumed. Through an iteration process, the
true values of the deflections at the stations can be calculated. This
procedure is extremely useful to evaluate the critical loads of members
with a variable moment of inertia. In addition, Newmark’s method is also
applicable to the analysis of inelastic members so long as the moment-
curvature-thrust relationship is known or available.

Another numerical solution scheme, presented in this chapter, that is
suitable for inelastic analysis is the step-by-siep numerical integration
procedure. In this procedure, the numerical calculation proceeds from
station to station. This procedure has an advantage over Newmark’s
method in that both the ascending and descending branches of the
load-defiection curve can be traced. Thus, a complete load-defiection
analysis can be performed.

Because of the systematic nature of Newmark's method and the
numerical integration procedure, both can be carried out conveniently in
a computer-based analysis.

PROBLEMS

6.1 Find the approximate elastic critical loads of the columns shown in Fig.
P6.1a—c by the Rayleigh—Ritz method.

m|r-

force
length

q

MII_

(b} (e)
FIGURE Pé6.1
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Problems

6.2 Determine the approximate elastic critical load for the spring-supported
column shown in Fig. P6.2 by the Rayleigh—Ritz method. k, is the spring

stiffness.

FIGURE P6.2 r Lyga  y Lia 3 Li4 f L/4 |

6.3 Using the Rayleigh—Ritz method, determine the approximate elastic critical
load for the column with variable Ef shown in Fig. P6.3.

P

EEIo

FIGURE P6.3 e

6.4 Using Galerkin’s method, determine the approximate elastic critical load for
the pinned-pinned column with variable EI shown in Fig. P6.4.

=]

(/‘~2EI

FIGURE P6.4 P
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6.5 Determine an approximate value for the elastic critical moment of the

fixed-ended beam shown in Fig. P6.5 using Galerkin’s method. The cross
seetion of the beam is reetangular.

M
1
i

o

L i
Slde View !
A Ericy
7 e
[ L |
FIGURE P6.5 ! Top View l

6.6 Using Newmark’s method, determine the approximate elastic critieal loads

of the stepped columns shown in Fig. P6.6a—b. Establish bounds to the
critical loads after each cycle of calculation.

p p
T— e
£ |
L ET,
]
b L 2ET,
2
L
= 2ET,
L
i 7 El,

FIGURE P6.6 ‘2 b}

6.7 Using Newmark’s method, trace the moment-rotation (M — &) curve for the
beam shown in Fig. P6.7, taking into consideration inelastic action. The
beam has a rectangular cross section; and the nondimensional moment-

curvature relationship is given by the following: for
m=1,

m=q
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Cross section

o

deflected shape

a
|h=0.1L
1
I L | ,
| | Material:
g, -=0.001E
FIGURE P6.7
and for

m>1,

1
m= %(1 - —)
i 3¢g
where m = M/M,, ¢ = ®/d,, in which M, is the yield moment and @, is the

curvature that corresponds to first yield of the cross section. What is the
value for M7

6.8 Using Newmark's method and the moment-curvature-thrust relationship
shown in Section 3.9.1 of Chapter 3, plot the load-deflection (moment-
centerline deflection) curve of the initially crocked beam-column shown in
Fig. P6.8. Determine the maximum moment that the member can carry for
P =0.5P,. Material: o, = 0.001E.

s X
YD’”‘D.DD'"_) SN T
M ! M
-
4 _._A_.... P x
S/
Y deflecled shape
b
—
Craoss section
h=0.1L
FIGURE Pé6.8

6.9 Repcat Problem 6.8 using the step-by-step numerical integration procedure.
Also trace the descending branch of the load-deflection curve.

6.10 By using the calculus of variations in conjunction with the Principle of
Stationary Total Potential Energy, derive the governing differential equation
and the corresponding boundary conditions (kinematic or natural) describ-
ing the buckling behavior of a tip-loaded cantilever column. Explain why
Galerkin’s method is difficult to implement for members with a free end.
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SOME SELECTED PROBLEMS

CHAPTER 1 GENERAL PRINCIPLES

k.’i
11 a. P.= Il + kL

p- 13k, 3k,L

15L 5
PI:]' = ’_?-ﬂkalL + ll_ﬁksZL

&

(]
H

k!l
2 a P.=—+k.L
1.2 a I

B3k, | kol
Fa="TsL 775

P:r = %k:lL + 11_5k52L

r

1.3 P.=

kL
5 — H 6
TsinB {cos 28 — cos 8 +sin 8)

90° > 8 > 68.53°, stable
68.53° >8> 0°, unstable
0°> 8 > —68.53° stable
—68.53°> 8> —90°, unstable
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FIGURE P1.3

14 P=k,Llcos(a— 0)—coso]tan (o — )
P.=0
8 < o —cos™" (cos a)'”, stable
or
6> w +cos™' (cos @)™, stable

& —cos” ' (cos a)"? < 8 < & +cos ' (cos &)'?, unstable

P

\
k
% 5 a
FIGURE P1.4 4
CHAPTER 2 COLUMNS
21 a n=1, a,:”jl
n=2, or = ﬂ{
L..
Pcr(nl) 1
Pcr(an] 4
o El=constant T b P
A —

FIGURE P2.1a



Chapter 2 Columns

mEl
b =1, P=F =
" aL?
O El
=73, P=P =——F
" 4L
P:r(nnl) = 1
Pl:r(n:]) 9
g El=constant
L
FIGURE P2.1b !
m*EB* EB*
22 P.= =1.234—
BL? L

23 tan kL tan (%) -2

1.0336E]
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L3 L3 2 2 I_EIO
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3.7185ET
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4
2.5 A= F/__ @

¢ P,

P
2.8 a. (—r) =118
F hg=0.d
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211 a. Use W10 x 30 ASD
bh. Use W10x 30 PD
¢. Use W8x24 LRFD

2EE,
212 E=—""2
E=z1x
2.13 P=,=3'i§1°
2.14 PE,=——0'1ft5EI
1

CHAPTER 3 BEAM-COLUMNS

_Qsink(L—a)
"~ EIK’sinkL

B=0
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~EIK
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34 a,
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— w
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3.5 b. For Fig. P3.5b
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sin (%k—L) 0 sin (Zk—L)

- £) 3 /7. _ N3/ _20(L-x)
y= (E1k3 okl STy seski - pne
w(xL— L7)

W kLY
+(E1k“ sin kL)[(l B “°ST) sin k(L — x)] TS

2L
for —B-S_xSL




Chapter 3 Beam-Columns

d. For Fig. P3.5d

gin KL
() s )
Y=\ERS | sinkr | T3 T \EIFL/\2 " 54
3w L 2L
-—_ —a k.t pnh—
+(EIk“L sin kL)(Ei SHI A €08
2kL L
+Esink.tsinL——xsinkL) for O0=sx=—
k 3 3
kL
smn—
_( Q) 3 sin ko — Ox _wL(L—x)
Y=\EIG)| sinkL 3EI  27EIKC
x( 3w )(sink(L—x))[} kL L Osk_L]
LE\ sinkL J&™™73 "33
L 2
for —<sx=<-L
or 3 X 3
{2kL
QS‘H(T) 20(L—x) wL{L—x)
y=|———|sink(L—x)— — — =
EIK sin kL 3EIRC 27EIR:
+( 3w )[sink(L—x)'”;s, KL L Sk_L]
LEK' /| sinkL k"3 373
for %Lsst
M,
3.6 a. Mu—0.4
ki = 1.982
£=0.998L =L
Mn'lnx:MH
M,
b, Z2=g
My
£=0.79L

. —=-0.4
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478 Answers lo Some Selected Prablems

X =0.637L
Mo = 1.3316Mp

3.7 Mo = Mo = PA(l —cos kL)
AT T L sinkL + 2 cos kL —2
_ PA
g
kL cctk—- 2
2
. P
kf=—
ErI
313 PL
M =
* _16P
P
mEr
‘I)E= a
L..

CHAPTER 4 RIGID FRAMES

30.5656E7

41 P,= =
L..

4.2 a. For Fig. P4.2(a)
(i) Sway-prevented case
B =2.407F,
(i) Sway-permitted case
F,, =0.6094P,
b. For Fig. P4.2(b)
(i) Sway-prevented case
F,.=1.314P.
(ii) Sway-permitted case
E.=0.661F,
43 b.

mEI
(0.5L)*

T Ef
L'..’

Upper bound P, =

Lower bound B, =



Chapter 5 Beams

z*El
. a= p=T=
¢ a=l  R=tarye
a4 p =22
L
T’ El
L . Pcr e rrree
45 @ (0.555L)
K =0.555
b. G;=025
GB =
K =0.555

4.6 a. Nonsway

3(Z)
(i) Pinned end G =L ’e
iy (E’)
S\L b

5 (%)

(i) Fixedend Gj=—tLle
2F (51)

A L b

b. Sway

5 (%)

(i) Pinned end G =2’
;E(E)
2L L/,

>0
———
|3

(ii) Fixedend Gj =

willa
>0

[ea]
::l:v

4.7 P,=225kips

CHAPTER 5 BEAMS

d'y d*y
51 EC,——-GJf——
dez do 2

4 z? El, L

1 [M(l +B)z - L

jr=o
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480 Answers fo Some Selected Problems

52 a, b, and ¢
dz* EC,dz* EC.EL '
3
53 M= (%‘)\&9 XTZX 10 k-in it

b’
=67‘8—L—\/Ek-ft(Lin fr).

Solution 1, 2tx¢t

_ 110.379
ocrl L
Solution 2, 4t xt
247.633
Mm:rz =
L
Solution 3, Btxt
_515.427
ocrd T L

54 (1) G,=1.0 (5) C,=1.143
(2) G,=1.714 (6) C,=1.0
() G,=24 (7 G, =1.385
@) G,=1.333

5.7 M,=3645 inkip
5.9 Method 1. Use Fig. 5.20,
P =28.24 kips
Method 2. Use Table 5.9, Case 11 and Eqgs. (5.6.16) and (5.6.17),
P..=49.75 kips
Method 3. Use Table 5.4 and Egs. (5.5.16) and (5.5.19),
P.=132.1kips

5.10 a. Solution 1: M, = 8680 k-in.
(M./My =0, G, =1.75, M = 4960 in-kip)
Solution 2: M, =6484.5 k-in.
M, =9219, (Cos = 5.115, M,.. = 1802 in-kip)

d'y dy y [wyrL® 2
sa1 EC, L -grit X —(—- )} =
S Ezy[z ;=) =0




Chapter 6 Energy and Numerical Methods 481

CHAPTER 6 ENERGY AND NUMERICAL METHODS

_ . TX
6.1 a. P=asin—

L

_2 =°El  n’El
T3 [ (L2247LY

b, ©=a(Ll — 3Lt +2x*)
233447°El 7°El
[ (0.207L%

Fo=

o (1 X

. U=ada —COSEE)
*Ef

(gL).. = 0.7992 "L— :

n inx
62 U= . sin —
) E]a sin T
2k, L
=1, P.=PFR|1+— ( —)
i=1 [1 aln:zP,{\/i Z;a,sm
+Ea.sin’£}:|
= 2
2k, L - ix
=2, P, .=P|2%+ e {( -—)H
[ [2 PaurP. 2 gla, sin 1
2k, L u i
=3, 11,—11[32 Lo {z( —)
i Fa,n°P, V2 a,sm 2

> asin |
— > a;5in—
i=1 2

, 2k, L 2 ni
. romrl o 2 S
i=n [n " zla sin sin 2

+(i a; sm—) sin E}]

fel

El, EnLm*
F.=4.2011— =0.4257
L? £?

64 a. F=a(3lx —3Lx*+3xY)

14.8235 1,

Po=
L—



482 Answers to Some Selected Problems

h. y=asin i
L
P, 14;521'51[I
6.5 y= (1 — cos g?)
M, = :)f GJEI,

6.6 a. Assume the deflection shape

y= 6(1 —cos%)

and divide the member into 10 segments.

Cycle 1.
4.44 EL, ) < EIu
El
P, =4, 66261—"
Cycle 2.
< B <4422
EIU

cr

b. Assume the deflected shape y =6 sin%E and divide the member into

10 segments

Cycle 1
El
Pl P=15.456 =
L_
Efn
Cycle 2
<P.<14.802 22
El

P.= 14.714L—2°




Chapler 6 Energy and Numerical Methods

6.8 Divide the member into 4 segments

= 0'41 ymidspﬂn = 0'00114L

=0.8, ¥ migepan = 0.00372L

Rz Bz

b. M, =6484.5k-in.
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A

Alignment chart (nomograph)
sway permitted case, 287
sway prevented case, 283
Allowable bending stress, 357-363
ASD (Allowable Stress Design), 37, 41, 169,
beam, 355-363
beam-column, 211-213, 218, 230
column, 123, 211, 213
Amplification factor, 55, 56, 94, 153, 351
desipn, 154, 156-157, 160, 161, 231
deflection, 155, 160
moment, 94, 155, 156, 160, 161, 170, 206
P-6 moment (B,), 215, 218, 230
P-A moment (B,), 216, 218, 230
theoretical, 154, 157, 160, 161
Analysis
large deflection, 24-31, 59, 60
small deflection (deformation), 12-24,
404
small displacement, 42, 413
Angle of wwist, 307-380, 408-414, 426-437
Asymmetric
bifurcation, 4, 6, 7
postbuckling behavior, 7
Axial shortening, 392-305, 401, 403

B
B; factor, 215, 218, 230
B, factor, 215, 216, 218, 230
Beams, 307-380
amplification factor, 351

cantilever, 336, 426
continuous, 346
design curves, {see Design curves for steel
beams)
effective length, 338-339, 340, 342-343
fixed-end, 339
inelastic, 351
initially crooked, 348
lateral buckling, 317-324
on elastic foundation, 423-426
other end conditions, 343
simply supported, 317-333, 431-437
spring system, 14
stocky, 354
Beam-column, 48, 147-235
basic differential equation, 175-177
design format {AISC), 211-219
fixed-ended, 172-175, 178-182, 152, 229
AISC/ASD, 170, 211-213, 218, 230
AISC/LRFD, 170, 215-219, 230
AISC/PD, 214, 218, 230
interaction equation, 205-219
stability (control), 211, 214
strength (yielding control), 212, 214
inelastic analysis, 193-205
simply supported, 148, 149, 156, 170-172,
453-460
slope-deflection equation, 182-193
superposition solutions, 170-175
Bending
curvature, 392, 401
shortening, 395-396, 401, 403, 410

485




486

Bifurcadon, 4, 5, 9, 11, 13, 16, 18, 20, 46,
401
analysis, (see eigenvalue analysis)
approach, 11, 13, 16, 18, 20
buckling, 5,9
equilibrium, 4, 46, 401
instability, 4
load, 11
stable symmetric, 6
symmetric, 4, 6
unstable symmetric, 7
Buckling
analysis, 4
elastic, 4
inelastic, 96
lateral, 164, 307, 364, 367, 373, 390, 391,
403-414, 426437, 441-443
local, 355, 364, 365

nonsway, 148, 170, 215, 229, 239-242, 248

stress (load), 212
sway, 148, 215, 217, 230, 243-247, 250,
260

C
Calculus of variations, 390-415
C,, factor, 326, 327, 332-335
C,, factor, 206-210Q, 229-230
Austin expression, 169
Massonnet expression, 169
Codes,
AISC/ASD, (see ASD)
AISC/LRFD, (see LRFD)
Coefficient of variation
load effects, 39
resistance, 39
Collapse
load, 238, 270-276
mechanism, 238, 354
Columns, 45-146
aluminum, 108-110
cantilever, 65, 83, 85, 86, 417423,
446449
curve, 73,75, 112
design eurves
AISC/ASD, 123,211, 213
AISC/LRFD, 128, 206
AISC/PD, 124
CRC, 122, 208, 213
SSRC, 125, 206
eccentrically loaded, 53
end-restrained, 61, 74
fixed-fixed, 62, 82, 402, 403 .
fixed-pinned, 67, 402, 403, 440-442

Index

fixed and guided, 69

fourth order differential equation, 80

hinged and guided, 71

hinged-hinged, 48, 81, 91, 390403, 438,

439, 444 ‘

inelastic buckling, 96

large displacement analysis, 58

long, 47

medium length, 47

Perry—Roberston formula, 95

reduced modulus, 48, 97, 100-105, 381

slender, 47

stub, 111

stocky, 47

selection table

AISC/LRFD curve, 127

Shanley’s inelastic theory, 103
Conjugate beam method, 444, 450, 451
Compaet section, 355, 357-359
Conservative forces, 11, 12, 42, 390
Contragradient law, 263
Critical load, 4, 8, 11, 42, 46, 239, 381, 382,

401, 415, 417

elastic buckling stress (load), 212

lower bound, 446

upper bound, 443, 446
Crookedness, 47, 91

D
Defiection
primary or fundamental, 4, 25, 26, 29, 30
problem, 147
secondary or postbuckling, 4, 25, 26, 29,
30
Design curves for steel beams, 355-371
AISC/ASD, 355-363
AISC/LRFD, 365-370
AISC/PD, 363-365
Iateral instability, 365
local buckling, 365
plastic yielding, 365
ECCS, 371
SSRC, 371
Design curves for eclumn
AISC/ASD, 123, 213, 213
AISC/LRFD, 128, 206
AISC/PD, 124
CRC, 122, 206, 213
mathematical form
Lui=-Chen, 131
Rondal-Magquoi, 130
multiple curves, 125, 129
S8RC, 125, 206



Index

Design format, 129
AISC/ASD, 37, 124
AISC/LRFD, 39, 128
AISC/PD, 38, 125
Design format for beam-column
AISC/ASD, 211-213, 218, 230
AISC/LRFD, 215-218, 230
AISC/PD, 214, 218, 230
Design
interaction formulas, 205-219
philosophies, 37-42, 206
Displacement control iteration procedure,
460463
Double (reverse) curvature (bending), 162,
164, 167, 193, 211
Double modulus theory, 100-105
Ductility, 271
Dynamic approach, 12

E
Eccentricity factor, 58
Effective length, 61
alipnment charts, 148, 225, 257, 283
factor, 64, 67, 69, 71, 73, 74, 148, 230,
282-287, 338
Eifective modulus, 97, 100, 381
Eigenvalue analysis, 11, 24, 49, 239, 381,
401, 415
Elastic
buckling analysis, 4
buckling stress (load), 212
frameworks, 382
instability, 237
lateral buckling, 367
lateral torsional, 307
linear system, 388, 389, 392, 404
modulus, 381
nonlinear system, 388, 389
-perfectly plastic, 194
-plastic analysis, 194, 238, 280
restrained ends, 74
Element stiffness formulation, 253
End-restrained column, 61
Energy method, 4, 11, 14, 17, 19, 22-34,
381-443
Equilibrium
clfect of imperfection on, 37
bifurcation, 4, 46
neutral, 3, 4, 46, 381, 401
postbuckling, 37
stable, 2, 15, 45, 46, 390
unstable, 2, 4, 15, 28, 37, 46, 390
Equivalent concentrated loads, 444, 445, 447

487

Equivalent moment
concept, 168, 326, 374
factor Cy,, 326, 327, 332-335
factor C,,, 168, 169, 170, 211
Euler load, 46, 52, 152, 225
European Committee on Constructional
Steelwork, 371
Extremum principle, 414

F

Factar of safety, 38
Finite-disturbance buckling, 8, 9
First-order

elastic analysis, 215

moment, 94, 218

probability theory, 39

second moment probability analysis, 39

structural analysis, 1
First variation of the total potential energy,

390, 397, 412

Fixed-end

beams, 339

beam-column, 172-182, 229

column, 62, 82, 402, 403

moment, 154, 172, 173, 191, 222
Fourier sine series, 95
Fourth-order differential equation, 79, 228
Frame, 219-218, 236-306

nonsway buckling, 239-242, 248

simple portal, 237, 277

sway buckling, 243-247, 250, 260
Free-body approach, 388, 414
Functionals, 391, 415
Fundamental path, 4, 26, 29

G
Galerkin’s method, 414, 438-443, 446, 463,
465

Generalized

displacements, 11, 12, 386

forces, 386
Geometrical imperfection, 11, 381
Guyed tower, 7

H
Hinge-by-hinge analysis, 272-275
Hooke’s Law, 50, 96, 149

|
Imperfection, 8, 11, 31-37, 381
column, 47, 91-108
factor, 58, 134
system, 31-37



488

Incremental load approach, 266
Inelastic
analysis, 193-205, 351, 381
beams, 351
beam-columns, 193-205, 450, 452,
453-460
buckling, %6
column, 96-108
lateral buckling, 367
Initially crooked
beams, 348-350
columns, 91-95
In-plane
bending, 317-319, 404—409, 413
buckling, 390, 391-403, 426
Instability, (see stability)
Interaction equations, (see beam-column)

K
Kinematic

admissible displacement, 20, 383, 383,
398

assumption, 196

boundary condition, 402, 438, 439, 443,
464, 465

constraints, 383, 385

L
Large deflection analysis, 24-31, 59, 60
Lateral (torsional) buckling (instability),
164, 208, 307, 317-324, 364, 367,
373, 390, 391, 403-414, 426-437,
441-443
Lateral unbraced length, 356
L’Hospital's rule, 187, 224
Limit load, 4, 8
Limit states, 1, 39, 47
design, 1
strenpth, 1
serviceability, 1
Linear
eigenvalue analysis, 24
translational spring, 16
rotational spring, 12, 20
LRFD (Load and Resistance Factor
Design), 37, 39, 41, 169, 170
beam, 365-370
beam-column, 215-219, 230
column, 128, 206
frame, 283-287
Load
combinations, 38, 39, 40
control iterative procedure, 460

Index

effects, 38, 39

factor, 38, 39, 40, 125, 214
Load-deflection

problem, 11, 31, 47, 459

analysis, 266-270, 381, 382
Local buckling, 355, 364, 365

M
Magnification factor, (see Amplification
factor)
Matrix stilfness method, 253-266
Mechanism method, 277
beam mechanism, 277
combined mechanism, 277
sway mechanism, 277
Merchant—Rankine equation, 280
Method of
neutral equilibrium, 46, 238
variation of parameters, 54, 150
undetermined coefficient, 54, 150
Momeni-curvature relationship, 49, 148,
197, 20, 443, 444, 447
M-t-P, 195-200, 452, 454, 459, 460, 461,
466
Momeni reduction factor, 211
mathematical form
Lui-Chen, 131
Rondal-Maquoi, 130
Monosymmetrie section, 353
Multiple-design curves, 125, 129

N
Newark’s method, 204, 382, 414, 443—460,
462, 463, 466
beam-column, 453—458
column, 446—450
Nomographs, (see alignment charts)
Noncompaet section, 355-358
Nonsway (model), 148, 170, 215, 229, 230,
239-242, 248
Non-uniform torsion, (see warping restraint
torsion)
Numerical method, 148, 382, 414, 415,
443-446
beam-column, 453—458
column, 446—450
frame, 266269
integration, 204, 382, 414, 460-463, 464

O
Orthogonal
functions, 423
property, 423, 424, 425



Index

Out-(of)-plane
bending (buckling), 317, 319, 404, 407,
409, 410, 432, 434
displacement, 318, 322

P
P-delta effect, (see second order)
Perry-Raoberston formula, 95
Plastic analysis
buckling load, 381
collapse loads, 238, 270-276
collapse mechanism, 1, 270
design (PD), 37, 38, 41, 124
beam, 363-365
beam-column, 214, 218, 230
column, 124
hinge, 270-272, 354
limit moment, 135
moment, 271, 355
section modulus, 214
strength, 39
Plastification, 271
Positive definite, 3
Postbuckling
behavior, 6, 24, 42
paths, 4, 6, 25, 27, 25, 30
Potential energy, 4, 11, 12, 14, 15, 17, 25,
390443
Primary
bending moments, 147, 155, 161, 208, 460
deflections, 147
path, 4, 25
plastic, 197, 203
Principle of
stationary total potential energy,
388-3951, 402-404, 414, 415
superposition, 154, 170, 172
virtual work, 382-388, 389
Proportional limit, 96

R
Random parameters, 40
Rayleigh-Ritz method, 414-437, 443, 446,
463-465
Reduced modulus theory, (see double
modulus theory)
Reliability (or safety) index, 3¢, 40, 41
Residual stresses, 112-117, 204
Resistance
factor, 39, 40
" nominal, 38, 39
Rigid constraints, 385
Rigid frames, 236-306

489

Right-handed screw rule, 320

]
Safety index, 39, 40, 41
Secant formula, 58
Secondary
deflection, 148
moment, 94, 148, 155, 211, 230, 454, 460
buckling path, 4
path, 4, 6, 25, 27, 29, 30
plastic, 198-200, 204
Second-order
analysis, 2, 266-269
elastic, 266—269
p-6 effect, 130, 139, 215, 218, 230, 266
p-A effect, 211, 216, 218, 230, 231, 266
Semicompact section, 357
Serviceability
limit states, 1
requirements, 42
Shanley’s inelastic theory, (see column)
Shape factor, 133
Stdesway, 211, 230
Single curvature, 164, 165, 167, 192, 193,
211
Slenderness
modified, 354
parameter, 73, 121-136, 354
ratio, 203, 204, 351
Slope-deflection equations, 182-187, 192,
193, 222, 248
modified, 187—193
Snap-through buckling, 8, 9
Specification
AlSC/ASD (see ASD)
AISC/LRFD (see LRFD)
Spring-bar system, 12, 24
Stability
analysis, 1, 11, 42, 126
behavior, theory, 42
functions, 184
interaction equation, (see beam-column}
limit point, 4
problem, 147
Stable equilibrinm, 2, 15, 28, 45, 390
Stable equilibrium path
fundamental, 28
postbuckling, 28, 37
Standard deviation, 39, 40
Stationary (extremal, maximum, or
minimum) value, 14, 391
Step-by-step numerical integration
proeedure, 460-463, 466
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WA Index

Stiffened elements, 355
Stilfness matrix, 3
linear, 260
geometric, 260
structure, 264
Strain
energy (function), 14, 17, 19, 22, 26, 28,
31, 35, 389-443
hardening, 271
reversal, 105
Strepgth (yielding control) interaction
equation, (see beam-column design
format)
Strength limit state, 1
Stress-strain curve (relation), 110, 111, 196,
270
Strong axis bending, 119
Structural Stability Research Council
Curves
beam, 371
column, 125-126
Stub column, 111
St. Venant
shear stresses, 309
torsion, 310, 430, 432
Superposition
principle of, 154, 170, 172
solution of beam-column by, 170-175
Sway
model (case), 148, 243
permitted (unbraced) case, 243-252
prevented (braced) case, 239242, 248,
282
Symmetric bifurcation
stable, 6, 28
unstable, 7, 31

T
Tangent modulus
load, 47, 100, 107, 381
theory, 48, 97
Tangent stifiness, 11
Taylor series, 27, 30
Torsion
narrow rectangular section, 317-321
non-uniform, 311
open cross section, 307, 309, 311
thin-walled open section, 309, 311

uniform (pure), 309, 311
warping restraint, 311, 313, 433, 434
Torsional constant, 310
Total potcntial energy (function}, 4, 11,
390-438, 464
minimum, 4
first variation, 390
second variation, 390
stationary, 388-391, 402-404, 414, 415
Total strain energy, 395, 408
Transition moment, 368
Twisting (deformation), 307-380, 404, 405,
408, 410

u

Ultimate

moment capacity, 208

plastic strength limit state, 39

strength interaction diagrams (curves),

204, 206, 207

Uniform torsion, (see St. Venant torsion)
Unstable

equilibrium, 2, 46, 350

equilibrium path, §, 15

postbuckling equilibrium paths, 37

symmetric bifurcation, 7
Unstiffened projecting elements, 355
Upper bound theorem, 276

\Y; 4
Variational calculus, 391, 464 i
Virtual work, 382-388

displacement, 382-1389, 398

external, 386, 389

internal, 386, 388

strain energy, 389, 390

w
Warping
restraint torsion, 311, 313, 433, 434
constant, 315, 434
deformation, 433
Weak axis bending, 119

Y
Yield load, 47, 73
Yield moment, 271




